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ABSTRACT

In this paper, we are concerned with a new modified conformable operator.
Such an operator makes the study very easy in fractional calculus because
it satisfies the most properties as the usual derivative and gives exact solu-
tions. Furthermore, we will analyze and study the second-order fractional
linear homogeneous differential equation with constant coefficients, which
has two reasons for the importance of these types of differential equations.
First of all, they often arise in applications. Second, it is relatively easy to
find fundamental sets of solutions to these equations. In addition, we will
also analyze the related fractional Cauchy–Euler type equation, which is
used in various fields, physics, engineering, etc. Finally, as an application,
we will illustrate the method on some numerical examples of the mentioned
type of fractional differential equations.

This is an open access article under the CC-BY-SA license.

1. Introduction

Fractional derivatives emanations dates back to the times of calculus. In 1695 L‘Hopital won-
dered at the meaning of dnf

dtn at n = 1
2 . So, from that time, the mathematical researchers have been

attempting to define a fractional derivative. The most known are Riemann Liouville definition and
Caputo definition [1]. As per Riemann Liouville definition 1847, fractional derivative of constant
function is not zero. In 1967 Caputo noticed it and gave another simplified definition of fractional
operator on the basis of series expansion. The theory of fractional derivatives progressed for three
centuries as primarily a theoretical study of mathematics relevant only to mathematicians [2].

In the 1980’s, Mandelbrot works on fractional geometry drew the attention of physicists to this
field of study and this led to the beginning of several publications in the field of fractional Brow-
nian motion and anomalous diffusion processes, see [3] and for more see [4]–[21]. The previous
definitions give an approximate solution to the problems as boundary values problems and fractional
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differential equations [22], [23]. The singular property that these fractional calculi have in common
may be the linearity however not all of these fractional derivatives conform the classical properties
like the product rule, the chain rule, etc. In order to overcome these or other poverties, in [24] the au-
thors introduced a new simple and well behaved local derivative called conformable derivative, which
defined as

Definition 1.1 [24] Given a function f : [0,∞) → R. Then

f (α)(x) = lim
ϵ→0

f(x+ ϵx1−α)− f(x)

ϵ
,

for all x > 0 and α ∈ (0, 1). If the limit exists, we call f (α)(x) the conformable derivative of f of

order α. If f is α-differentiable in some (0, a) such that a > 0 and lim
x→0+

f (α)(x) exists, then define

f (α)(0) = lim
x→0+

f (α)(x).

The conformable derivative defined on a basic limit definition and satisfies most of the properties
that the classical integer order derivative has. In 2015, T. Abdeljawad generalized many beneficial
and worthy results [25]. Moreover, authors developed this derivative more specifically conformable
Laplace transform in [26]–[28] and conformable Fourier series in [29]–[31] and the atomic exact
solution using tensor product theory in [32]. Khalil et al. in [33] presented a geometric meaning of the
conformable derivative using the idea of fractional cords so from that time, more and more attention
has been paid to this derivative and many problems were solved by using such a definition. More
applications on conformable operator can be found in [34]–[37], and others can be found in [38]–
[54].

In this paper we will be concerned with a newly defined conformable operator [55], which was
introduced by Anderson, Douglas R., and Darin J. Ulness such a modified conformable operator has
a great rule because it satisfy the most properties as the usual derivative. Also, this article aims to
use the modified conformable operator in the study and analysis of the following type of a constant
coefficients modified conformable differential equation

aDαDαu(x) + bDαu(x) + cu(x) = 0, a, b, c ∈ R, x ∈ [x0,∞), x0 > 0,

this type of equations has a vital role in differential equations because of two reasons. First of all,
they often arise in applications. Secondly, as we will see, it is relatively easy to find fundamental
sets of solutions for these equations. Furthermore, we will study and analyze the given homogeneous
Cauchy-Euler modified conformable differential equation via modified conformable operator

axDα [xDαu(x)] + bDαu(x) + cu(x) = 0, a, b, c ∈ R, x ∈ [x0,∞), x0 > 0,

by presenting the general solutions of this Cauchy-Euler equations using the roots of its associated
characteristic equations. For applications of the Cauchy-Euler equation in physics and engineering we
refer the reader to [56]–[58]. Moreover, we should mention here that the value of the used modified
conformable operator is to give an exact solution to this type equations, however authors in [59], [60]
find an approximate solutions. Finally, as an application we illustrate the method of solution on some
numerical example in details.

2. Modified Conformable Calculus

In this part we present some preliminaries of modified conformable operator denoted Dα of order
α where 0 < α ≤ 1 and D0, D1 are reduced to the identity operator and the classical differential
operator, respectively.

Ahmed Bouchenak (Study and Analysis of the Second Order Constant Coefficients and Cauchy-Euler Equations via

Modified Conformable Operator)



796 International Journal of Robotics and Control Systems
Vol. 5, No. 2, 2025, pp. 794–812

ISSN 2775-2658

Definition 2.1 (Modified Conformable Differential Operator). [55]
Let 0 < α ≤ 1, a differential operator Dα is modified conformable iff D0 is the identity opera-
tor and D1 is the classical differential operator. Specifically, Dα is modified conformable iff for a
differentiable function f(x) we have

D0f(x) = f(x) and D1f(x) =
d

dx
f = f

′
(x), x ∈ R (1)

Definition 2.1 is more general. To clarify this definition for readers, we say that the modified con-
formable operator Dα can take several forms, as determined by the following definition:

Definition 2.2 (A Class of Modified Conformable Derivative). [55]
Let 0 < α ≤ 1, and let the functions k0, k1 : [0, 1]× R → [0,∞) be continuous such that

lim
α→0+

k1(α, x) = 1, lim
α→0+

k0(α, x) = 0, ∀x ∈ R,

lim
α→1−

k1(α, x) = 0, lim
α→1−

k0(α, x) = 1, ∀x ∈ R,

k1(α, x) ̸= 0, α ∈ [0, 1), k0(α, x) ̸= 0, α ∈ (0, 1], ∀x ∈ R.

(2)

Then the following differential operator Dα defined by

Dαf(x) = k1(α, x)f(x) + k0(α, x)f
′
(x) (3)

is modified conformable operator provided that the function f(x) is differentiable and f
′
(x) = d

dxf.

The following example explains how an operator can be a class of modified conformable derivative.

Example 2.3 1. Take k1(α, x) = (1− α)xα and k0(α, x) = αx1−α for any x ∈ (0,∞), we find

Dαf(x) = k1(α, x)f(x) + k0(α, x)f
′
(x)

= (1− α)xαf(x) + αx1−αf
′
(x).

Based on the obtained operator, we get:

D0f(x) = f(x) and D0f(x) = f
′
(x), itmeans Dα satisfy condition (2.1),

and one can easily prove that Dα satisfy condition (2.2), then we say that Dα is a class of
modified conformable derivative.

2. Take k1 = cos
(
απ
2

)
xα and k0 = sin

(
απ
2

)
x1−α for any x ∈ (0,∞) we get

Dαf(x) = k1(α, x)f(x) + k0(α, x)f
′
(x)

= cos
(απ

2

)
xαf(x) + sin

(απ
2

)
x1−αf

′
(x).

Similarly, the resulting operator satisfy conditions (2.1) and (2.2), then is a class of modified
conformable derivative. Note that unfortunately DαDβ ̸= DβDα in general.

Definition 2.4 (Partial Conformable Derivatives). [55]
Let 0 < α ≤ 1, and let the functions k0, k1 : [0, 1] × R → [0,∞) be continuous and satisfy (2).
Given a function f(x, s) : R2 → R such that d

dxf(x, s) exists for each fixed s ∈ R, define the partial
modified conformable differential operator Dα

x by

Dα
xf(x, s) = k1(α, x)f(x, s) + k0(α, x)

∂

∂x
f(x, s) (4)

it means that, Dα
x correspond to derive the function f(x, s) of the two variables x and s with respect

to x.
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Definition 2.5 (Modified Conformable Exponential Function). [55]
Let 0 < α ≤ 1, s, x ∈ R with s ≤ x, and let the functions m : [s, x] → R be continuous.
k0, k1 : [0, 1]× R → [0,∞) be continuous and satisfy (2) with m/k0 and k1/k0 Riemann integrable
on [s, x]. Then the modified conformable exponential function with respect to Dα is defined to be

em(x, s) = e
∫ x
s

m(λ)−k1(α,λ)
k0(α,λ)

dλ
, if m = 0 then e0(x, s) = e

∫ s
x

k1(α,λ)
k0(α,λ)

dλ
. (5)

We should mention here that the exponential function will help us to simplify the form of the solutions
for the fractional differential equations that we present in the next section, also the value of the
function m will be change depend to the situation.

Now based on (3) and (5), we have the following basic results.

Lemma 2.6 (Basic Derivatives). [55]
Let the modified conformable differential operator Dα be given as (3), where 0 < α ≤ 1. Let the
function m : [s, x] → R be continuous and the functions k0, k1 : [0, 1]× R → [0,∞) be continuous
and satisfy (2) with m/k0 and k1/k0 Riemann integrable on [s, x]. Assume the functions f and g are
differentiable as needed. Then
(i) Dα[af + bg] = aDα[f ] + bDα[g], for all a, b ∈ R.
(ii) Dαc = ck1(α, x), for all constants c ∈ R, x ∈ R.
(iii) Dα[fg] = fDα[g] + gDα[f ]− fgk1(α, x), x ∈ R.
(iv) Dα

[
f
g

]
= gDα[f ]−fDα[g]

g2
+ f

g k1(α, x), x ∈ R and g ̸= 0.
(v) For α ∈ (0, 1] and fixed s ∈ R, the exponential function satisfies

Dα
x [em(x, s)] = m(x)em(x, s) (6)

(vi) For α ∈ (0, 1] and for the exponential function e0 given in (5), we have

Dα

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
= f(x). (7)

Proof 1 Using the formula of the modified conformable operator presented in (2.3) we get
(i) For all a, b ∈ R we have

Dα[af + bg] = k1(α, x)(af + bg) + k0(α, x)
d

dx
(af + bg)

= a

(
k1(α, x)f(x) + k0(α, x)

d

dx
f(x)

)
+ b

(
k1(α, x)g(x) + k0(α, x)

d

dx
g(x)

)
= aDα[f ] + bDα[g]

(ii) For all constants c ∈ R, x ∈ R we obtain

Dαc = k1(α, x)c+ k0(α, x)
d

dx
c = ck1(α, x).

(iii) For all x ∈ R we find

Dα[fg] = k1(α, x)(fg) + k0(α, x)
d

dx
(fg)

= k1(α, x)(fg) + k0(α, x)

(
g
d

dx
f + f

d

dx
g

)
= f

(
k1(α, x)g + k0(α, x)

d

dx
g

)
+ g

(
k1(α, x)f + k0(α, x)

d

dx
g

)
− k1(α, x)(fg)

= fDα[g] + gDα[f ]− fgk1(α, x).
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(iv) For all x ∈ R and g ̸= 0 we have

Dα

[
f

g

]
= k1(α, x)

[
f

g

]
+ k0(α, x)

d

dx

[
f

g

]
= k1(α, x)

[
f

g

]
+

k0(α, x)
d
dx [f ]− k0(α, x)

d
dx [g] + gk1(α, x)f − gk1(α, x)f

g2

= k1(α, x)

[
f

g

]
+

g
(
k0(α, x)

d
dx [f ] + k1(α, x)f

)
− f

(
k0(α, x)

d
dx [g] + k1(α, x)g

)
g2

=
gDα[f ]− fDα[g]

g2
+

f

g
k1(α, x)

(v) For α ∈ (0, 1] and fixed s ∈ R, the exponential function satisfies

Dα
x [em(x, s)] = k1(α, x) [em(x, s)] + k0(α, x)

∂

∂x
[em(x, s)]

= k1(α, x) [em(x, s)] + k0(α, x)
∂

∂x

[
e
∫ x
s

m(λ)−k1(α,λ)
k0(α,λ)

dλ
]
em(x, s)

= k1(α, x)

[
em(x, s) + k0(α, x)

m(x)− k1(α, x)

k0(α, x)

]
em(x, s)

= m(x)em(x, s).

(vi) For α ∈ (0, 1] and for the exponential function e0 given in (5), we have

Dα

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
= k1(α, x)

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
+ k0(α, x)

d

dx

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
= k1(α, x)

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
+ k0(α, x)

(∫ x

a

∂

∂x

[
f(s)e0(x, s)

k0(α, s)

]
ds+

f(x)e0(x, x)

k0(α, x)

)
= k1(α, x)

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
+ k0(α, x)

∫ x

a
−k1(α, x)

k0(α, x)

[
f(s)e0(x, s)

k0(α, s)

]
ds+ f(x)

= k1(α, x)

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
− k1(α, x)

[∫ x

a

f(s)e0(x, s)

k0(α, s)
ds

]
+ f(x)

= f(x).

Definition 2.7 (Modified Conformable Integral). [55]
Let 0 < α ≤ 1 and x0 ∈ R. In light of (5) and Lemma 2.6 (v) and (vi), define the antiderivative via∫

Dαf(x)dαx = f(x) + ce0(x, x0), c ∈ R.

In the same way define the integral of f over the closed interval [a, b] as follows :∫ b

a
f(s)e0(x, s)dαs =

∫ b

a

f(s)e0(x, s)

k0(α, s)
ds, dαs =

ds

k0(α, s)
. (8)

Therefore, we can write:

e0(x, s) = e
∫ s
x

k1(α,λ)
k0(α,λ)

dλ
= e

∫ s
x k1(α,λ)dαλ.
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Lemma 2.8 (Basic Integrals). [55]
Let the conformable differential operator Dα be given as in (3) and the integral be given as (8) with
0 < α ≤ 1. Let the functions k0, k1 : [0, 1]×R → [0,∞) be continuous and satisfy (2) and let f and
g be differentiable as needed. Then
(i) The derivative of the definite integral of f is given by

Dα

[∫ x

a
f(s)e0(x, s)dαs

]
= f(x).

(ii) The definite integral of the derivative of f is given by∫ x

a
Dα [f(s)e0(x, s)dαs] = f(s)e0(x, s) |xs=a= f(x)− f(a)e0(x, a).

(iii) An integration by parts formula is given as follow∫ b

a
f(x)Dα[g(x)]e0(b, x)dαx = f(x)g(x)e0(b, x) |bx=a

−
∫ b

a
g(x)(Dα[f(x)]− k1(α, x)f(x))e0(b, x)dαx.

(iv) A version of the Leibniz rule for the differentiation of an integral is given by

Dα

[∫ x

a
f(x, s)e0(x, s)dαs

]
=

∫ x

a
(Dα

x [f(x, s)]− k1(α, x)f(x, s)) e0(x, s)dαs+ f(x, x).

If e0(x, s) is absent then by (4) we have

Dα

[∫ x

a
f(x, s)dαs

]
=

∫ x

a
Dα

xf(x, s)dαs+ f(x, x).

Proof 2 It is simple to prove this lemma using the formula of the modified conformable operator
presented in (2.3); Lemma 2.6 and integration by part of the usual derivative. More details about this
proof can be founded in [55].

In this definition, we will introduce functions that will serve the role that polynomials do in
Taylor series expansions for the regular derivative ( α = 1 ) which we need in the proof of Theorem
3.1 case 1.

Definition 2.9 Let the functions κ0, κ1 : [0, 1]× R → [0,∞) be continuous such that the conditions
in (2.2) are hold. When α = 1 and n ∈ N0, the polynomials are given by bn(x, s) =

1
n!(x− s)n. To

generalize this to the present context, define the functions bn : R2 × R → R, n ∈ N0 via

b0(x, s) = 1, ∀x, s ∈ R

and
bn(x, s) =

∫ x

s
bn−1(λ, s)dαλ, n ∈ N, ∀x, s ∈ R.

3. Second Order Linear Modified Conformable Differential Equations (MCDEs)

In this part we will consider the following second order linear homogeneous modified con-
formable differential equation with constant coefficients

aDαDαu(x) + bDαu(x) + cu(x) = 0, x ∈ [x0,∞), x0 > 0,
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Where a, b, c are real constants. In addition, we will also analyze the related Cauchy - Euler type
modified conformable equation

axDα[xDαu(x)] + bxDαu(x) + cu(x) = 0, x ∈ [x0,∞), x0 > 0,

Theorem 3.1 (Constant Coefficients MCDEs)
Let the functions k0, k1 : [0, 1] × R → [0,∞) be continuous and satisfy (2), and let Dα be as given
in (3). Let a, b, c ∈ R be constants and α ∈ (0, 1]. Then the constant coefficients homogeneous
modified conformable differential equation

aDαDαu(x) + bDαu(x) + cu(x) = 0, x ∈ [x0,∞), x0 > 0, (9)

has the associated characteristic equation

aλ2 + bλ+ c+ 0, (10)

and the general solution to (9) is given by one of the following cases:
Case 1: If λ1, λ2 are real distinct roots of (10), then

u(x) = c1eλ1(x, x0) + c2eλ2(x, x0),

Case 2: If λ is a repeated root of (10), then

u(x) = c1eλ(x, x0) + c2eλ(x, x0)

∫ x

x0

1dαs,

Case 3: If λ = ζ ± iβ is a complex root of (10), then

u(x) = c1eζ(x, x0) cos

(∫ x

x0

βdαs

)
+ c2eζ(x, x0) sin

(∫ x

x0

βdαs

)
,

Proof 3 Let us try the solution

u(x) = eλ(x, x0) = e
∫ x
x0

λ−k1(α,t)
k0(α,t)

dt
.

Substitute u(x) in (9), this leads by (6) to the characteristic equation (10).Thus there are three cases.
Case 1: If λ1 ̸= λ2 and λ1, λ2 ∈ R are the roots of (10), then

u(x) = c1eλ1(x, x0) + c2eλ2(x, x0),

then
Dαu(x) = c1λ1eλ1(x, x0) + c2λ2eλ2(x, x0),

and
DαDαu(x) = c1λ

2
1eλ1(x, x0) + c2λ

2
2eλ2(x, x0),

Now substitute u1(x) in (9), we get

aDαDαu(x) + bDαu(x) + cu(x) = 0.

Since λ1 and λ2 are roots of the characteristic equation, we obtain

c1eλ1(x, x0)(aλ
2
1 + bλ1 + c) + c2eλ2(x, x0)(aλ

2
2 + bλ2 + c)

= c1eλ1(x, x0)(0) + c2eλ2(x, x0)(0)

= 0.
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Case 2: If λ1 = λ2 = λ ∈ R is a repeated root of (10), then the first solution is given by

u1(x) = e
∫ x
x0

λ−k1(α,t)
k0(α,t)

dt
,

When α = 1 (the classical case) we know that u2(x) = xu1(x) is a second linearly independent
solution, so we try

u2(x) = u1(x)b1(x, x0) = u1(x)

∫ x

x0

1dαs = eλ(x, x0)

∫ x

x0

1dαs.

Using Lemma 2.6 (iii) and Lemma 2.8 (iv), we have

Dαu2(x) = Dα

(
eλ(x, x0)

∫ x

x0

1dαs

)
= eλ(x, x0)

(
1 + k1(α, x)

∫ x

x0

1dαs

)
+ λeλ(x, x0)

∫ x

x0

1dαs

− k1(α, x)eλ(x, x0)

∫ x

x0

1dαs

= eλ(x, x0)

(
1 + λ

∫ x

x0

1dαs

)
.

Now

DαDαu2(x) = Dα

[
eλ(x, x0)

(
1 + λ

∫ x

x0

1dαs

)]
= λeλ(x, x0) + λ

(
eλ(x, x0)

(
1 + λ

∫ x

x0

1dαs

))
= 2λeλ(x, x0) + λ2eλ(x, x0)

∫ x

x0

1dαs.

With λ = −b
2a (since λ is repeated root) and substitute u2(x) in (9), we get that

a

(
2λeλ(x, x0) + λ2eλ(x, x0)

∫ x

x0

1dαs

)
+ beλ(x, x0)

(
1 + λ

∫ x

x0

1dαs

)
+ ceλ(x, x0)

∫ x

x0

1dαs

= eλ(x, x0)

(
2aλ+ aλ2

∫ x

x0

1dαs+ b+ bλ

∫ x

x0

1dαs+ c

∫ x

x0

1dαs

)
= eλ(x, x0)

(
2a

(
−b

2a

)
+ b+ aλ2

∫ x

x0

1dαs+ bλ

∫ x

x0

1dαs+ c

∫ x

x0

1dαs

)
= eλ(x, x0)

∫ x

x0

1dαs(aλ
2 + bλ+ c) = 0.

Because λ is a root for the characteristic equation (10). So, u2(x) is a solution for (9)
Case 3: The roots of (10) complex roots (say λ = ζ ± iβ). By Euler’s formula, we observe that u(x)
and the result can found in the classical form as follows:

u(x) = eζ(x, x0) cos

(∫ x

x0

βdαs

)
+ ieζ(x, x0) sin

(∫ x

x0

βdαs

)
= eζ(x, x0)

(
cos

(∫ x

x0

βdαs

)
+ i sin

(∫ x

x0

βdαs

))
= eζ(x, x0)e

i
∫ x
x0

βdαs = e
∫ x
x0

ζdαse
i
∫ x
x0

βdαs = e
∫ x
x0

ζ+iβdαs

= eζ+iβ(x, x0).
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Dαu(x) = Dα [eζ+iβ(x, x0)] = (ζ + iβ)eζ+iβ(x, x0),

and

DαDαu(x) = Dα [(ζ + iβ)eζ+iβ(x, x0)]

= (ζ + iβ)2eζ+iβ(x, x0).

Now substitute u(x) in (9), we get that

DαDαu(x) = a(ζ + iβ)2eζ+iβ(x, x0) + b(ζ + iβ)eζ+iβ(x, x0) + ceζ+iβ(x, x0)

= eζ+iβ(x, x0)(aλ
2 + bλ+ c)

= eζ+iβ(x, x0)(aλ
2 + bλ+ c) = 0.

Since λ is a root for the characteristic equation (10).
So the real and imaginary parts of this expression are linearly independent solutions of (9).

The next theorem provided the general solution of the second order Cauchy – Euler modified
conformable differential equation.

Theorem 3.2 (Cauchy – Euler MCDEs).
Let the functions k0, k1 : [0, 1] × R → [0,∞) be continuous and satisfy (2), and let Dα be as given
in (3). Let a, b, c ∈ R be constants and α ∈ (0, 1]. Then the homogeneous Cauchy – Euler type
modified conformable differential equation (MCDE)

axDα [xDαu(x)] + bDαu(x) + cu(x) = 0, x ∈ [x0,∞), x0 > 0, (11)

has the associated characteristic equation (10) and the general solution to (11) is given by one of the
following cases for the constants c1, c2 ∈ R
Case 1: If λ1, λ2 ∈ R and λ1 ̸= λ2 are distinct roots of (10), then the general solution is given by

u(x) = c1eλ1/x(x, x0) + c2eλ2/x(x, x0).

Case 2: If λ1, λ2 ∈ R such that λ1 = λ2 = λ = −b
2a are repeated roots of (10), then the general

solution is given by

u(x) = c1eλ/x(x, x0) + c2eλ/x(x, x0)

∫ x

x0

s−1dαs.

Case 3: If λ = ζ ± iβ is a complex root of (10), then the general solution is given by

u(x) = c1eζ/x(x, x0) cos

(
β

∫ x

x0

s−1dαs

)
+ c2eζ/x(x, x0) sin

(
β

∫ x

x0

s−1dαs

)
.

Proof 4 Case 1: Let‘s begin with u1(x), and similarly for u2(x).

Dαu1(x) = Dα
(
eλ1/x(x, x0)

)
=

λ1

x
eλ1/x(x, x0).

Consequently, we have

D2αu1(x) = DαDαu1(x)

= Dα

(
λ1

x
eλ1/x(x, x0)

)
=

λ2
1

x2
eλ1/x(x, x0)−

λ1

x2
k0(α, x)eλ1/x(x, x0).
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Now substitute u1(x) in (11), we see that

ax

[
λ2
1

x2
eλ1/x(x, x0)−

λ1

x2
k0(α, x)eλ1/x(x, x0) +Dαu1(x)(k0(α, x) + k1(α, x)x)

− k1(α, x)xD
αu1(x)

]
+ bx

(
λ1

x
eλ1/x(x, x0)

)
+ ceλ1/x(x, x0)

=aλ2
1eλ1/x(x, x0)− aλ1k0(α, x)eλ1/x(x, x0) + aλ1k0(α, x)eλ1/x(x, x0)

+ axλ1k1(α, x)eλ1/x(x, x0)− axλ1k1(α, x)eλ1/x(x, x0)

+ bλ1xeλ1/x(x, x0) + ceλ1/x(x, x0)

=aλ2
1eλ1/x(x, x0) + bλ1xeλ1/x(x, x0) + ceλ1/x(x, x0)

=eλ1/x(x, x0)(aλ
2 + bλ+ c)

=0.

Since, λ1 is a root for the characteristic equation (10).
Case 2: If λ = −b

2a is repeated root and

u2(x) = u1(x)

∫ x

x0

s−1dαs = eλ/x(x, x0)

∫ x

x0

s−1dαs,

then

D2αu2(x) = Dα

(
eλ/x(x, x0)

∫ x

x0

s−1dαs

)
= eλ/x(x, x0)

(
1

x
k1(α, x)

∫ x

x0

s−1dαs

)
+ Dαeλ/x(x, x0)

∫ x

x0

s−1dαs− k1(α, x)eλ/x(x, x0)

∫ x

x0

s−1dαs

=
u1(x)

x
+ k1(α, x)u1(x)

∫ x

x0

s−1dαs+Dαu1(x)

∫ x

x0

s−1dαs

− k1(α, x)eλ/x(x, x0)

∫ x

x0

s−1dαs

=
u1(x)

x
+Dαu1(x)

∫ x

x0

s−1dαs.

D2αu2(x) = DαDαu2(x)

= Dα

[
c+Dαu1(x)

∫ x

x0

s−1dαs

]
=

Dαu1(x)

x
+ u1(x)

(
k1(α, x)

x
− k0(α, x)

x2

)
− k1(α, x)u1(x)

x

+ Dαu1(x)

(
1

x
k1(α, x)

∫ x

x0

s−1dαs

)
+ D2αu1(x)

∫ x

x0

s−1dαs− k1(α, x)D
αu1(x)

∫ x

x0

s−1dαs

=
2Dαu1(x)

x
− k0(α, x)u1(x)

x2
+D2αu1(x)

∫ x

x0

s−1dαs
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Now substitute u2(x) in (11) we get that

axDα[xDαu2(x)] + bDαu1(x)

∫ x

x0

s−1dαs+ cu1(x)

∫ x

x0

s−1dαs

= ax[x(D2αu2(x)) + xk1(α, x)D
αu2(x)

+ Dαu2(x)k0(α, x)− k1(α, x)D
αu2(x)] + bDαu2(x) + cu2(x)

= ax[x

(
2Dαu1(x)

x
− k0(α, x)u1(x)

x2
+D2αu1(x)

∫ x

x0

s−1dαs

)
+ k0(α, x)

(
u1(x)

x
+Dαu1(x)

∫ x

x0

s−1dαs

)
]

+ bx

(
u1(x)

x
+Dαu1(x)

∫ x

x0

s−1dαs

)
+ cu1(x)

∫ x

x0

s−1dαs

= 2axDαu1(x) + ax2D2αu1(x)

∫ x

x0

s−1dαs+ axk0(α, x)D
αu1(x)

∫ x

x0

s−1dαs

+ bu1(x) + bxDαu1(x)

∫ x

x0

s−1dαs+ cu1(x)

∫ x

x0

s−1dαs

= 2ax

(
−b

2a

)
u1(x) + ax[xD2αu1(x)

∫ x

x0

s−1dαs

+ k0(α, x)D
αu1(x)

∫ x

x0

s−1dαs] + bu1(x) + bxDαu1(x)

∫ x

x0

s−1dαs+ cu1(x)

∫ x

x0

s−1dαs

+ bxDαu1(x)

∫ x

x0

s−1dαs+ cu1(x)

∫ x

x0

s−1dαs

=
[
ax

(
xD2αu1(x) + k0(α, x)D

αu1(x)
)
+ bxDαu1(x) + cu1(x)

] ∫ x

x0

s−1dαs

= [axDα (xDαu1(x)) + bxDαu1(x) + cu1(x)]

∫ x

x0

s−1dαs = 0.

Since u1(x) is a solution for (10), we conclude that u2(x) is a solution for (10).
Case 3: If λ = ζ + iβ is a complex root of (10), then the complex for (11) solution is given by

u(x) = e(ζ+iβ)/x(x, x0)

= eζ/x(x, x0)e
iβ/x

= eζ/x(x, x0)

[
cos

(
β

∫ x

x0

s−1dαs

)
+ i sin

(
β

∫ x

x0

s−1dαs

)]
.

And again both real and imaginary parts of the above expression are linearly independent solutions
of (11).

4. Applications

As an application we are going to illustrate the method on some numerical examples. It will be
raised in the form of problems that will handled.
Problem 1:
Consider the following linear second order constant coefficients modified conformable differential
equation:

DαDαu(x)− 2Dαu(x) + u(x) = 0, x ∈ [1,∞), (12)

With initial conditions
u(1) = 4, Dαu(1) = 5. (13)
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Assume that k0(α, x), k1(α, x) satisfy (2). If k1(α, x) is differentiable on [1,∞) and
α ∈ [0, 1) (condition of Theorem 3.1) then,
We observe that characteristic equation for the modified conformable differential equation (4.1) is
given by

λ2 − 2λ+ 1,

and the roots of it are λ = 1 repeated, so by Theorem 3.1 the general solution of the equation (4.1) is
as follow:

u(x) = c1e1(x, 1) + c2e1(x, 1)

∫ x

1
1dαs,

Where c1 and c2 are constants.
The initial conditions (4.2) and the use of Lemma 2.6 (iii) and Lemma 2.8 (iv), implies that

u(1) =

(
c1e1(x, 1) + c2e1(x, 1)

∫ x

1
1dαs

)
|x=1

= c1e1(1, 1) + c2e1(1, 1)

∫ 1

1
1dαs = c1e1(1, 1) + 0

= c1e1(1, 1) = c1e
∫ 1
1

m(λ)−k1(α,λ)
k0(α,λ)

dλ
= c1e

0 = c1

= 4,

Also,

Dαu(1) = Dα

(
c1e1(x, 1) + c2e1(x, 1)

∫ x

1
1dαs

)
|x=1

= Dα (c1e1(x, 1)) |x=1 +Dα

(
c2e1(x, 1)

∫ x

1
1dαs

)
|x=1 by Lemma 2.6 (i)

= Dα (4e1(x, 1)) |x=1 + c2e1(x, 1)

(
1 +

∫ x

1
1dαs

)
|x=1 by Lemma 2.6 (iii)

and Lemma 2.8 (iv)

= Dα (4e1(x, 1)) |x=1 + c2e1(1, 1)

(
1 +

∫ 1

1
1dαs

)
= Dα (4e1(x, 1)) |x=1 + c2e1(1, 1)

= Dα (4e1(x, 1)) |x=1 + c2 by Lemma 2.6 (v)

= 4e1(1, 1) + c2 = 4 + c2 = 5.

Hence c2 = 1. Therefore, the exact solution for the modified conformable differential equation (4.1)
is given by

u(x) = 4e1(x, 1) + e1(x, 1)

∫ x

1
1dαs.

Problem 2:
We present the second constant coefficients modified conformable differential equations as can be
seen bellow:

DαDαu(x)− 2Dαu(x) + 2u(x) = 0, x ∈ [2,∞), (14)

With initial conditions
u(2) = 1, Dαu(2) = 2. (15)
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Assume that k0(α, x), k1(α, x) satisfy (2). If k1(α, x) is differentiable on [1,∞) and α ∈ [0, 1)
(condition of Theorem 3.1). So, it is clear that the associated characteristic equation for the modified
conformable differential equation (4.3) is given by

λ2 − 2λ+ 2 = 0,

and the roots of it are λ = 1 ± i (complex roots). So, based on Theorem 3.1, the general solution is
given by

u(x) = c1e1(x, 2) cos

(∫ x

2
1dαs

)
+ c2e1(x, 2) sin

(∫ x

2
1dαs

)
,

for some constants c1, c2.
The initial conditions (4.4) and the use of Lemma 2.6 (iii) and Lemma 2.8 (iv), implies that

u(2) =

[
c1e1(x, 2) cos

(∫ x

2
1dαs

)
+ c2e1(x, 2) sin

(∫ x

2
1dαs

)]
|x=2

= c1e1(2, 2) cos

(∫ 2

2
1dαs

)
+ c2e1(2, 2) sin

(∫ 2

2
1dαs

)
= c1e1(2, 2) cos (0) + c2e1(2, 2) sin (0)

= c1e
∫ 2
2

m(λ)−k1(α,λ)
k0(α,λ)

dλ

= c1 = 1.

Also,

Dαu(2) = Dα

[
c1e1(x, 2) cos

(∫ x

2
1dαs

)
+ c2e1(x, 2) sin

(∫ x

2
1dαs

)]
|x=2

= c1D
α

[
e1(x, 2) cos

(∫ x

2
1dαs

)]
|x=2 + c2D

α

[
e1(x, 2) sin

(∫ x

2
1dαs

)]
|x=2

by Lemma 2.6 (i)

= c1

[
e1(x, 2)D

α

(
cos

(∫ x

2
1dαs

))
+ cos

(∫ x

2
1dαs

)
Dα (e1(x, 2))

]
|x=2

− c1

[
e1(x, 2) cos

(∫ x

2
1dαs

)
k1(α, x)

]
|x=2

+ c2

[
e1(x, 2)D

α

(
sin

(∫ x

2
1dαs

))
+ sin

(∫ x

2
1dαs

)
Dα (e1(x, 2))

]
|x=2

− c2

[
e1(x, 2) sin

(∫ x

2
1dαs

)
k1(α, x)

]
|x=2

by Lemma 2.6 (i) and (v) and Lemma 2.8 (iv)

= c1 [k1(α, 2) + 1− k1(α, 2)] + c2 [1 + 0− 0]

= c1 + c2 = 2.

Since c1 = 1, we deduce that c2 = 1. Consequently, we conclude that the exact solution of the second
order constant coefficients modified conformable differential equation (4.3) is giving as

u(x) = e1(x, 2) cos

(∫ x

2
1dαs

)
+ e1(x, 2) sin

(∫ x

2
1dαs

)
.

Problem 3:
Consider the following second order Cauchy-Euler modified conformable differential equation

xDα[xD2αu(x)]− 4u(x) = 0, x ∈ [3,∞), (16)
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subject to the following initial conditions

u(3) = 2, Dαu(3) = 4. (17)

Assume that k0(α, x), k1(α, x) satisfy (2). If k1(α, x) is differentiable on [1,∞) and
α ∈ [0, 1) (condition of Theorem 3.2) then,
Notice that the associated characteristic equation of the previous Cauchy-Euler modified conformable
differential equation is given by

λ2 − 4 = 0,

and the roots of it are
λ = ±2.

So, by Theorem 3.2 the general solution of the Cauchy-Euler modified conformable differential equa-
tion (4.5) is giving as

u(x) = c1e 2
x
(x, 3) + c2e−2

x
(x, 3),

Where c1 and c2 are constants to be determined based on the initial conditions.
The initial conditions (4.6) and the use Lemma 2.6 (iii) and Lemma 2.8 (iv), show that

u(3) =
(
c1e 2

x
(x, 3) + c2e−2

x
(x, 3)

)
|x=3

= c1e 2
3
(3, 3) + c2e−2

3
(3, 3)

= c1e
∫ 3
3

m(λ)−k1(α,λ)
k0(α,λ)

dλ
+ c2e

∫ 3
3

m(λ)−k1(α,λ)
k0(α,λ)

dλ

= c1 + c2 = 2.

In other side, using Lemma 2.6 (i) and Lemma 2.8 (iv), we get

Dαu(3) = Dα
(
c1e 2

x
(x, 3) + c2e−2

x
(x, 3)

)
|x=3

=

(
c1

2

x
e 2

x
(x, 3) + c2

−2

x
e−2

x
(x, 3)

)
|x=3

= c1
2

3
e 2

3
(3, 3) + c2

−2

3
e−2

3
(3, 3)

=
2

3
c1 −

2

3
c2 = 4.

Therefore we get

{
c1 + c2 = 2,
2
3c1 −

2
3c2 = 4,

⇒

{
c2 = 2− c1,
2
3c1 −

2
3c2 = 4,

.

Thus
2

3
c1 −

2

3
(2− c1) = 4 ⇒ 2c1 + 2c1 − 4

3
=

12

3
⇒ 4c1

3
=

16

3

c1 =
16

4
= 4, then c2 = −2

Therefore, we conclude that the exact solution of the second order Cauchy-Euler modified con-
formable differential equation (4.5) is presented as

u(x) = 4e 2
x
(x, 3)− 2e−2

x
(x, 3).

Hence a result as required.
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5. Conclusion

In this work, the modified conformable operator Dα has been successfully utilized to obtain exact
solutions for second-order differential equations with constant coefficients, including their associated
Cauchy-Euler forms. The presented technique has proven effective, as demonstrated by numerical
examples, confirming its reliability in solving such equations. Future research may extend this ap-
proach to higher-order and nonlinear differential equations, as well as explore broader applications in
physics and engineering.
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