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1. Introduction 

The application of pathfinding in autonomous robots has been utilized in various fields [1]-[7]. 

Pathfinding is crucial for mobile robots because it enables them to navigate their environment and 

reach specific destinations without human intervention [8]-[15]. Some key reasons why pathfinding 
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 Incorrect parameter tuning of crossover and mutation rates in Genetic 

Algorithms (GA) can negatively impact their effectiveness and efficiency 

in mobile robot pathfinding. This study focuses on improving the 

performance of wheeled mobile robots in grid-based environments by 

introducing a Dynamic Crossover and Mutation Rates (DCMR) strategy 

within the GA framework. The primary contribution of this research is 

enhancing the efficiency and effectiveness of mobile robot pathfinding, 

resulting in shorter average path lengths and faster convergence times. 

Additionally, this method addresses the challenge of selecting appropriate 

GA parameters while increasing the algorithm's adaptability to different 

phases of the search process. The DCMR approach involves linearly 

increasing the crossover rate by 10% (from 0% to 100%) and decreasing 

the mutation rate by 10% (from 100% to 0%) over every 10 generations 

during the GA's evolution. Unlike fixed parameter tuning or exponential 

and sigmoid parameter tuning—both of which require trial and error to 

determine optimal values—the DCMR method provides a systematic and 

efficient solution without additional computational cost. Experiments were 

conducted across eight scenarios featuring varying distances between the 

start and target points, with two obstacles randomly placed in the robot's 

environment. The results showed that implementing the DCMR method 

consistently identified the optimal path, reduced average path lengths by 

0.99%, and accelerated algorithm convergence by 48.39% compared to 

fixed parameter tuning. These findings demonstrate that the DCMR 

method significantly enhances the performance of GAs for mobile robot 

pathfinding, offering a reliable and efficient approach for navigating 

complex environments. 
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is important are that pathfinding allows robots to move autonomously through complex environments, 

effective pathfinding ensures that robots take the most efficient routes, a good pathfinding algorithm 

helps robots avoid obstacles, and pathfinding involves both global and local planning.  

Pathfinding in mobile robots faces several significant challenges, such as unstructured 

environments [16], collision avoidance [17], excessive turns [18], dynamic and real-time adaptation 

[19], dan computational complexity [20]. Genetic Algorithms (GA) can help address these pathfinding 

challenges by optimising paths over generations to adapt to unpredictable terrains, evolving diverse 

path options, smoothing out paths to reduce unnecessary turns, by rapid re-computation, and by using 

hybrid approaches it can reduce computational complexity while maintaining pathfinding efficiency 

[18], [21]. 

Numerous researchers have used GA in mobile robot pathfinding investigations by modelling it 

as a Travelling Salesman Problem (TSP) [22]-[25]. Other researchers modelled the robot environment 

in the form of a grid [26]-[29]. Research conducted by [28], [30]-[33] all modified the GA or combined 

the GA with other methods for mobile robot pathfinding. In addition to pathfinding, GA is also used 

for solving a variety of challenging optimization issues. Researchers across a wide range of fields, 

including computer networks [34], software engineering [35], image processing [36], healthcare [37], 

educational games [38], machine learning [39], essentially used GA extensively all the time. In GA, 

without any mathematical explanation, optima developed from generation to generation. It is a 

discontinuous, non-linear process not guided by mathematics. GA became a significant tool to resolve 

issues with various solutions and intricate search spaces. This enabled the resolution of various 

optimization problems and the discovery of multiple solution structures, particularly in parameter 

tuning.  

For mobile robot pathfinding, parameter tuning in Genetic Algorithms (GA) is crucial due to its 

significant impact on the algorithm's efficiency and effectiveness. Several problems related to 

parameter tuning are population size, crossover and mutation rates, and fitness function. The 

relationship between these GA parameters directly impacts solution quality. Maintaining balanced 

parameter values will enhance GA performance. Incorrect these parameter settings can result in 

convergence to a sub-optimal solution or slow down the evolutionary process. Crossover and mutation 

rates are two parameters that must be carefully chosen when designing GA. Crossover helps introduce 

new variations in the population by combining genes from two different individuals, allowing the 

algorithm to explore new solution regions and increase genetic diversity. Mutation is done by 

changing a small portion of an individual chromosome, thus introducing new traits that can help in 

finding a better optimal solution [29]. Improper crossover rates might fail to generate diverse 

offspring, limiting the exploration of new paths. Similarly, low mutation rates can result in slow 

convergence and stagnation, while high mutation rates can disrupt good solutions.  

Some researchers who conducted pathfinding research with mobile robots solved the tuning 

parameter problem through fixed parameter tuning [21], [40]-[43] by setting different values for 

crossover rates and mutation rates. Other studies set the tuning parameters exponentially or 

sigmoidally [44], [45] by setting a certain range of values for crossover and mutation rates. Although 

these studies provide good results in mobile robot pathfinding performance, the use of fixed 

parameters for crossover and mutation rates in mobile robot pathfinding can cause several 

shortcomings such as premature convergence, limited diversity, and non-optimal performance [9], 

[18], [46]. Similar to fixed parameter tuning, exponential parameter tuning for crossover and mutation 

rates in mobile robot pathfinding can lead to several drawbacks such as overemphasis on exploration 

or exploitation, complexity in tuning because it requires careful calibration, increased computational 

load, and risk of instability due to sudden shifts in mutation and crossover rates [47]-[49]. Both 

methods still require a trial-and-error process to find the right value or range of crossover and mutation 

rates. On the other hand, at different stages in the pathfinding process, different parameter values may 

be more suitable.  

To overcome the problem of determining the right parameters and improving the efficiency and 

effectiveness of GA in mobile robot pathfinding, in this study, dynamic parameter tuning is applied 
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by applying linear changes in crossover and mutation rates every 10 generations that will not cause 

additional computational cost. This research aims to improve mobile robot pathfinding performance 

by dynamically adjusting crossover and mutation rates within the GA in terms of completeness, path 

lengths, and convergence time. The main contribution of this research is demonstrating that 

dynamically adjusting crossover and mutation rates in GA improves pathfinding efficiency and 

effectiveness, resulting in shorter average path lengths and faster convergence. The second 

contribution of the research is that this study addresses the challenge of selecting the right parameters 

for GA and making the algorithm more adaptable to different stages of the search process. Robots will 

perform better because of this research when it comes to determining routes and obtaining the shortest 

routes between the start and target points at different distances. This paper starts with the relevant 

research and then moves on to the proposed methodology, examines the experiment's results, and its 

discussion. A summary and suggestions on the study's findings make up the final section. 

2. Methods 

2.1. Environmental Modelling 

The result of this research will be tested with a wheeled mobile robot so that the area of the robot's 

working environment is limited according to the existing hardware. As can be seen in Fig. 1 (a), the 

mobile robot used is tubular with a diameter of 15 cm and height of 5 cm and has 2 motors to drive 2 

motion wheels. The top of the robot is coloured blue. The small yellow circle at the top of the robot is 

used to determine the front of the robot.  

The robot's working environment is designed according to the size of the robot, which is a flat 

field with an active area measuring 175 cm × 95 cm which is coloured green. To simplify the 

representation of the robot's working area and obstacles, the real robot's working environment is 

created in the form of a grid [50], [51]. The grid-based model was chosen because of its simplicity 

and effectiveness in handling various obstacles and providing a straightforward framework for 

applying optimization algorithms. The working area was divided into 50 grids consisting of 5 rows 

and 10 columns with a distance between the grid midpoints of 16 cm. Each grid is marked with an 

orange circle with a diameter of 7 cm. The obstacle is made in the form of a red cube with a side length 

of 8 cm. The camera is placed at the top of the centre of the robot environment 150 cm above the 

robot's working area. The robot’s real working environment can be seen in Fig. 1 (b). 

  
(a) (b) 

Fig. 1. Environmental modelling (a) the wheeled mobile robot and (b) the real working environment of the 

robot 
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In this system, the camera will capture images of the robot's work area, then determine the 

coordinates of each grid in the robot's work area, the start point of the robot, the position of the 

obstacles to be processed into the GA on the computer which will find the shortest path for the robot 

to traverse to the destination point. After the algorithm finds the shortest path, the robot will receive a 

command from the computer to move towards the destination point. 

In this study, to reduce the complexity of navigation, help avoid collisions with obstacles, and be 

efficient in pathfinding, in the developed software, the working environment of the robot is modelled 

as in Fig. 2. It can be seen in Fig. 2, that the region the robot can move through is indicated by the 

white grid, the obstacles in the environment are indicated by the red grid, the start point position is 

indicated by the blue grid, and the goal point location is indicated by the yellow grid. The primary 

purpose of assigning numbers to the grids is to facilitate the coding of solutions in post-sequence 

algorithm programs that represent the ultimate solution path. A global static path that is ultimately 

planned and shown on the grid as a set of numbers. 

The robot environment is represented as fifty grids (J=50), which consist of five rows (M=0-4) 

and ten columns (N = 0-9). If a grid becomes an obstacle (red grid), then O=1, and if the grid is free 

(white grid), then O=0. The connections for each grid in the environment are shown in Fig. 3. The 

robot can move by focusing on the connection information (C) in the location it is to determine its 

next step. CT is the connection to the top grid, CR is the connection to the right grid, CB is the 

connection to the bottom grid, and CL is the connection to the left grid. Every free grid (like in Fig. 3 

(a)) has value 1 for CT, CR, CB, and CL, except for the topmost grid, CT=0, the rightmost grid, CR=0, 

the bottommost grid, CB=0, and the leftmost grid, CL=0. For a red grid or an obstacle like in Fig. 3. 

(b), CT, CR, CB, and CL become 0. Since the number of connections provided is only 4, while from 

one point is only allowed to go to one other point, the possible connections allowed are 1/4 or 0.25. If 

a grid is not an obstacle, then a connection in that grid will be generated with a connection probability 

(PCO = 0.25). 

 

Fig. 2. Grid map of the robot environment 

 

Fig. 3. Connection conditions for (a) a free grid and (b) an obstacle 
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2.2. Genetic Representation 

All the information is available for each grid in the robot's working environment and represented 

in a matrix with 50 rows (J=50) and 7 columns (D=7) where the seven columns contain information 

about M (0-4), N (0-9), O (0-1), CT (0-1), CR (0-1), CB (0-1) and CL (0-1) as shown in (1). The 

formation of genetic representation in the matrix is used to provide information on the direction of the 

path that may be travelled by the mobile robot and to avoid obstacles. 

 

I[J,D] = [

i00 i01 i02 … i0d

i00 i01 i02 … i1d

⋮
ij0 ij1 ij2 … ijd 

] (1) 

For example, using the working environment in Fig. 3 (b), grid number 1 which is a free grid will 

give a genetic representation [0 1 0 0 1 0 1] where the numbers in the first and second columns indicate 

the position of the grid in the 0th row and 1st column, then the number in the third column is given the 

value 0 because the grid is free. The numbers in the 4th through 7th columns indicate no connection 

above because the grid is at the upper boundary of the work environment, the connection on the right 

is 1, the connection below is 0 because there is an obstacle below, and the connection on the left is 1. 

Another example, grid number 11 which is an obstacle has a genetic representation of [1 1 1 0 0 0 0] 

where the numbers in the first and second columns indicate the position of the grid in the 1st row and 

1st column, then the number in the third column is given a value of 1 if the grid is an obstacle. The 

numbers in the 4th through 7th columns indicate there are no connections above, the right, below, and 

the left because the grid is an obstacle. 

2.3. Fitness Function 

The pathfinding problem seeks to identify the shortest route between the target and start points. 

With the fitness function, the chromosomal quality of a population is evaluated. When the GA 

generates chromosomes randomly, each chromosome will be calculated for its fitness function.  Each 

gene will be calculated as its distance from the target point using Euclidean distance with (2).  

Euclidean distance was chosen as the metric for the fitness function because it allows the GA to 

calculate the shortest path without being affected by orientation and direction constraints. Equation 

(3) will sum the distance of each gene in a chromosome into a fitness function. To obtain the shortest 

distance, the chromosome that has the minimum fitness function must be selected. 

 𝛿(𝑝𝑖) = √(𝑥𝑛 − 𝑥𝑖)2 + (𝑦𝑛 − 𝑦𝑖)2 (2) 

 
𝑓 = ∑ 𝛿(𝑝𝑖)

𝑛≤50

𝑖=1

 (3) 

The distance between two points is denoted by δ, the ith gene of the chromosome by pi, the 

position of ith gene horizontal and vertical locations by xi and yi, and the target horizontal and vertical 

locations by xn and yn, and the fitness function is denoted by f. The maximum number of genes in a 

chromosome is limited to the number of grids, which is 50. For example, as in Fig. 4, if the start point 

is grid 0, and the target point is grid 42, and a chromosome gene generates paths 0-10-20-30-40-41-

42, the length of the chromosome is 7. The fitness value or f for this example can be seen in (4). 

 𝑓 = √20 + √13 + √8 + √5 + √4 + √1 + √0 = 16,142 (4) 

2.4. Genetic Operator 

The genetic operator is part of the GA shown in Fig. 5. In this study, the population size was set 

to 100 based on the results of previous studies which showed that a population of 100 was sufficient 

to produce optimal and rapidly convergent paths. 
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Fig. 4. An example of a chromosome that gives a path from grid 0 to grid 42 

 After population initialization as generation 0, a fitness function will be calculated to sort the 

chromosomes in the population from those with the closest distance to the target to those with the 

farthest distance to the target. Starting from generation 1, the genetic operator will be applied for each 

generation: (1) selection of two chromosomes that become parents using the tournament selection 

method with the probability of chromosome selection (PS = 0.1/5 of 50 chromosome) to pass the 

crossover process, resulting in a new chromosome for the population in the next generation based on 

the probability of crossover (PC), (2) crossover process of two chromosomes selected as parents using 

the one point crossover method (1 of 50 gene chosen as the point) which has a probability (PCG = 

0.02), (3) mutation process of chromosomes in the population to produce new chromosomes for the 

population in the next generation based on the probability of mutation (PM) with the probability of 

selecting genes that pass the mutation process (PMG = 0.1/5 of 50 gene will changed), (4) chromosome 

elitism process to maintain chromosomes with the best fitness function using the rank selection 

method for the population in the next generation based on the elitism probability (PE = 0.02/1 of 50 

chromosome). After running the genetic operator, GA will continue with the calculation of the fitness 

function, and the formation of the current generation population. The GA will stop when the number 

of generations reaches maximum generation. 

2.5. Dynamic Approach of Crossover and Mutation Rate (DCMR) 

In this study, DCMR is applied where crossover rates are gradually increased, and mutation rates 

are gradually decreased as the GA evolves. This approach helps balance exploration and exploitation, 

which are critical to GA's success. Early exploration helps the algorithm search across a broader 

solution space, avoiding traps in local optima. This phase uses high mutation to introduce novelty and 

low crossover to reduce premature refinement. Late exploitation focuses on polishing the solutions by 

recombining strong candidates (high crossover) while minimizing disruptive randomness (low 

mutation). This phase ensures convergence to an optimal or near-optimal solution. Along with the 

crossover rate increases from 0% to 100%, the mutation rate decreases every 10 generations from 0% 

to 100%. The decrease in crossover rate and the increase in mutation rate were made equal at 10%. 

Upon algorithm startup, the mutation rate (PM), gene mutation rate (pMG), and crossover rate (PC) are 

adjusted linearly depending on the number of generations in total as well as the number of current 

generations by (5), (6), and (7). CG denotes the number of generation levels (the current generation, 

when the ratio is determined), Gn represents the total number of generations, and pMG represents the 

probability of a gene being selected through the mutation process. 

 
𝑃𝑀 =

𝐶𝐺

𝐺𝑛

  (5) 
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 𝑝𝑀𝐺 = 𝑃𝑀𝐺  𝑥 𝑃𝑀 (6) 

 
𝑃𝐶 = 1 −

𝐶𝐺

𝐺𝑛

 (7) 

The rates for the GA run are shown in Table 1. According to Table 1, the crossover rate increases 

by 10% at every 10-generation level, reaching 100% at the last generation. At every 10-generation 

level, starting from 100%, the mutation rate is decreased by 10% to achieve 0% at the end of the GA 

cycle. The crossover rate at each generation is equal to the complement of the mutation rate, as shown 

by (5) and (7). At the same generation level, the crossover rate plus the mutation rate adds up to 100%. 

The goal is to dynamically increase population variety by using changes in crossover and mutation 

rates. 

 

Fig. 5. Flowchart of designed GA 
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2.6. Fixed Parameter Tuning Method (0.9PC0.03PM) 

For comparison, the fixed parameter tuning method is implemented. As mentioned in the 

introduction, researchers apply different crossover and mutation rates in their GA designs using the 

try-and-error method. In this research, a fixed value for crossover rates is PC = 0.9, as used by several 

researchers [21], [44]. For the mutation rate we choose PM = 0.03, which is used by several researchers 

[45]. For every generation level of the experiment, there is an equal number of mutant chromosomes 

and crossover participants. 

Table 1.  Crossover, mutation, and mutation gen rates during the GA run 

Generation PC (%) PM (%) pMG (%) 
1-9 0 100 10 

10-19 10 90 9 

20-29 20 80 8 

30-39 30 70 7 

40-49 40 60 6 

50-59 50 50 5 

60-69 60 40 4 

70-79 70 30 3 

80-89 80 20 2 

90-99 90 10 1 

100-109 100 0 0 

 

2.7. Experimental Method 

We use Microsoft Visual Studio C# to create software to simulate the algorithm. Using a robot 

working environment consisting of 50 grids of 5 rows and 10 columns, the GA algorithm was tested 

with 8 variations of scenarios to see if the DCMR helps find paths faster with varying start-target 

distances and different obstacles placed. The distance between the start point and the target point from 

one scenario to the next increases by 1 grid to the right. Scenario 1 has the shortest distance between 

the start point and the target point, while Scenario 8 has the longest distance between the start point 

and the target point. The target point is on the left if the start point is on the right, and vice versa. In 

addition, if the target point is at the bottom, the start point is at the top. Two obstacles were relocated, 

in addition to the start point and target point distances changing from near to far apart. Varying the 

start-target distances incrementally across scenarios will determine how effective the algorithm is 

under varying levels of complexity. Placing the target on the opposite side of the grid (left-right or 

top-bottom) ensures the pathfinding algorithm navigates the entire grid space. Moving obstacles 

between scenarios creates a dynamic and realistic simulation environment. To make it easier to 

understand the experimental setup, an illustration of the 8 scenarios which have different positions of 

start point, target point, and obstacles is presented in Fig. 6. A blue grid is used to indicate the start 

point, a yellow grid is used to indicate the target points and red grids are used to indicate obstacles.  

The number of steps used is equal to the number of grids in the robot's working environment. 

According to previous research [40], a population of 100 was sufficient to generate optimal and 

quickly converging pathways. The maximum number of generations is set according to the decrease 

in crossover and increase in mutation every 10 generations.  

For every scenario, we ran the analysis ten times and reported the average results. Ten runs 

provide a balance between resource efficiency and ensuring robust results. The four performance 

criteria used to assess the performance of path-finding algorithms are completeness, optimality, time 

complexity, and space complexity [52]. We consider the completeness, optimality in the form of best 

path length, and time complexity represented by the number of generations to convergence. After 

conducting experiments, first, we analyse the maximum fitness, the minimum fitness, and the average 

fitness for every scenario. Then, the completeness, best path length, average and standard deviation 

of path length and number of generations to converge data for all scenarios from ten runs after 

implementation of DCMR and 0.9PC0.03PM are shown in a table. Next, the average path length and 
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the average number of generations to converge for all scenarios after the implementation of DCMR 

and 0.9PC0.03PM were tested for differences using a t-test. To see how much difference between the 

application of the DCMR method and the 0.9PC0.03P method in the designed GA on the average path 

length and average number of generations of Scenario 8, Cohen's d effect size is calculated. 

 

Fig. 6. Eight scenarios were used in the experiments (a) scenario 1, (b) scenario 2, (c) scenario 3, (d) scenario 

4, (e) scenario 5, (f) scenario 6, (g) scenario 7, and (h) scenario 8  

For the experiment, we utilized 50 steps, a population size of 100, and a maximum generation of 

109. 

3. Results and Discussion 

3.1. Main Findings of The Present Study 

As mentioned in the method section, the fitness function directly impacts the path evaluation. For 

example, in Fig. 7. with the same start point and target point in Scenario 3, the fitness values obtained 
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for different chromosomes can be different. Fig. 7 (a) shows a shorter path with a fitness value of 

26.779 compared to Fig. 7 (b) which shows a longer path with a fitness value of 33.567. From the path 

evaluation results, the path with the smaller fitness value will be selected as the better path. 

Fig. 8 shows the maximum fitness, minimum fitness, and average fitness values for Scenarios 3 

and 6. As seen in Fig. 8 (a) and Fig. 8 (b), the maximum fitness can vary because the paths generated 

by the algorithm are random, meaning that the population varies. Since the population evolves in each 

generation, as can be seen in Fig. 8 (a) and Fig. 8 (b), the minimum fitness value or best path length 

tends to become lower as the generation increases until it converges in a certain generation. This is 

due to the implementation of all genetic operators so that there will be more population variations that 

can reach the target point. The average fitness is also in line with the minimum fitness, which tends to 

decrease from generation to generation because more populations have fitness values that are closer 

to the minimum fitness value. 

 

Fig. 7. Comparison of fitness value from scenario 3 (a) shorter path with fitness value of 26,799, (b) longer 

path with fitness value of 33,567 

Table 2 shows the completeness, best path length from 8 scenarios, the mean and standard 

deviation of path length and number of generations to converge for 10 runs of pathfinding performance 

when GA employs DCMR and 0.9PC0.03PM. The experimental results show that both methods can 

100% find the target points in all scenarios. The best path length obtained by applying both methods 

is also the same, meaning that the dynamic approach of crossover and mutation rate and the fixed 

parameter tuning method get the same best path for all scenarios. The best path length for 8 scenarios 

can be seen in Fig. 9. Although the results of applying the DCMR and 0.9PC0.03PM methods obtained 

the same completeness and best path length in all scenarios, the average path length and convergence 

by applying the DCMR method were slightly better than applying 0.9PC0.03PM. 

  
(a) (b) 

Fig. 8. Maximum fitness, minimum fitness, and average fitness values for (a) scenario 3 and (b) scenario 6 

Fig. 10 (a) compares the average path length with DCMR and 0.9PC0.03PM implementation. 

From 10 trials, the average path length obtained when implementing DCMR is mostly slightly lower 
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than when implementing 0.9PC0.03PM. In Fig. 10 (b), for all scenarios, the average number of 

generations required to find the path from the start point to the target point is lower when applying 

DCMR than when applying 0.9PC0.03PM.  

Table 2.  Performance of DCMR and 0.9PC0.03PM on pathfinding 

Scenario Method 
Complete-

ness (%) 

Best 

Path 

Length 

Path Length 

Number of 

Generations to 

Converge 

Average 
Standard 

Deviation 
Average 

Standard 

Deviation 

1 DCMR 100 14.283 14.283 0.000 0.8 0.789 

 0.9PC0.03PM 100 14.283 14.283 0.000 1.4 1.838 

2 DCMR 100 18.202 18.228 0.081 2.9 2.025 

 0.9PC0.03PM 100 18.202 18.339 0.353 3.5 3.808 

3 DCMR 100 23.948 23.948 0.000 2.1 2.234 

 0.9PC0.03PM 100 23.948 23.948 0.000 3.9 3.071 

4 DCMR 100 29.796 29.907 0.146 6 2.828 

 0.9PC0.03PM 100 29.796 30.005 0.287 16.3 14.945 

5 DCMR 100 35.309 35.503 0.412 8.8 6.033 

 0.9PC0.03PM 100 35.309 35.481 0.399 15.5 7.169 

6 DCMR 100 43.472 43.739 0.367 5.2 2.530 

 0.9PC0.03PM 100 43.472 44.815 2.233 15.7 5.851 

7 DCMR 100 51.788 52.471 1.534 11.8 4.492 

 0.9PC0.03PM 100 51.788 53.935 3.676 34.4 18.216 

8 DCMR 100 58.752 59.030 0.440 14.4 8.553 

 0.9PC0.03PM 100 58.752 60.194 2.214 24.8 12.647 

 

The results of testing the difference in pathfinding performance using DCMR and 0.9PC0.03PM 

for Scenario 8 on the average path length and average number of convergent generations can be seen 

in Table 3. In Table 3, the difference in experimental results is also tested with t-test and Cohen's d 

effect size. 

3.2. Comparison with Other Studies 

The A*, D*, RRT, and GA are widely used approaches for mobile robot pathfinding, each with 

distinct strengths and limitations. A* is a graph-based heuristic search algorithm that guarantees 

optimal paths in static and structured environments. It is efficient for known maps but struggles with 

large-scale or dynamic scenarios due to high computational overhead [53]. D* extends A* for dynamic 

and partially unknown environments, adapting to changes in real-time. While more flexible than A*, 

it has increased complexity and computational cost. RRT (Rapidly-exploring Random Tree) excels in 

high-dimensional, unstructured spaces and rapidly finds feasible paths. However, it does not guarantee 

optimality and is less suited for structured environments [54]. On the other hand, GA employs 

evolutionary optimization principles, making it adept at solving complex and multi-objective path-

planning problems in dynamic and unpredictable environments. GAs can handle non-linear problems 

but are computationally intensive and sensitive to parameter tuning, such as mutation and crossover 

rates [46]. GA can overcome the high computational cost and optimality issues faced when applying 

A*, D*, and RRT by applying appropriate parameter tuning methods [55]. The DCMR method applied 

in this study does not require high computational cost, but the path length obtained can be optimized 

with faster convergence time as shown in Table 2. 

In GA, parameter tuning strategies such as fixed and exponential or sigmoid can significantly 

impact optimization performance. Fixed parameter tuning applies mutation and crossover rates 

constant throughout the algorithm's execution. It lacks the flexibility to adapt to different stages of the 

optimization process, which may result in suboptimal performance for complex problems [56], [57]. 

Exponential tuning adjusts parameters using an exponential function which parameters change rapidly 

at the beginning of the algorithm and stabilize later. This strategy helps in quickly exploring the 

solution space early on and focuses on fine-tuning as the algorithm progresses [44], [45]. DCMR 
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method is linear parameter tuning which modifies parameters in a steady, incremental manner over 

generations. This method balances exploration and exploitation effectively and doesn’t need a trial-

and-error process to find the right value or range of crossover and mutation rates. 

   

Fig. 9. Best path length obtained for (a) scenario 1, (b) scenario 2, (c) scenario 3, (d) scenario 4, (e) scenario 

5, (f) scenario 6, (g) scenario 7, and (h) scenario 8 

  
(a) (b) 

Fig. 10. Comparison of path finding performance by applying DCMR and 0.9PC0.03PM (a) average path 

length and (b) average number of generations 
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Table 3.  The difference test result of pathfinding performance by applying DCMR and 0.9PC0.03PM for 

Scenario 8 on (a) average path length and (b) average number of generations to converge 

(a) 

Method DCMR 0.9PC0.03PM 

Mean 59.030 60.194 

Standard Deviation 0.440 2.214 

p-value - 0.071 

Cohen’s d - 0.729 

(b) 

Method DCMR 0.9PC0.03PM 

Mean 14.4 24.8 

Standard Deviation 8.553 12.647 

p-value - 0.006 

Cohen’s d - 0.963 

3.3. Implication and Explanation of Findings 

The maximum fitness shown in Fig. 8 shows varying values because the population is generated 

by the GA randomly. Randomness in GA is crucial as it ensures diversity within the population, leads 

to broader solution spaces, and improves the chances of finding a global optimum. Good quality 

randomness prevents premature convergence to suboptimal solutions.  In Scenario 3 (Fig. 9 (a)), the 

highest value of maximum fitness is 452.276 where the generated path is circuitous and hence the 

fitness is high. In Scenario 6 (Fig. 9 (b), where the start point is at grid 40 and one of the obstacles is 

at grid 41, the highest value of maximum fitness is 403.113 which appears in many chromosomes in 

many generations because the start point is in the lower left corner and there is an obstacle to the right, 

no path is generated, meaning the robot will remain at the start point. This condition also occurs in 

Scenario 1 and Scenario 7 which have the same start point conditions as Scenario 6.  

The conditions seen in Scenarios 1, 6 and 7, show that the placement of obstacles greatly affects 

the effectiveness of the pathfinding algorithm because obstacles in strategic locations can increase the 

number of points that need to be evaluated by the algorithm, slowing down the pathfinding process 

[58]. In addition, complex or adjacent obstacles force the algorithm to find alternative routes, which 

may be longer or non-optimal [59]. 

The completeness results shown in Table 2, which reached 100%, show better results compared 

to those obtained in previous research [40] where for Scenario 6 to Scenario 8, 2 out of 8 trials could 

not find the target point. The best path obtained when applying DCMR and 0.9PC0.03PM obtained 

the same results because the mutation rates used in both approaches range from 0 to 0.1, which will 

aid in boosting population variety and preventing premature convergence. The fact that the optimum 

path length found using both approaches is the same value serves as evidence for this. This shows that 

the DCMR method can be applied when using GA algorithms in real-world applications. 

It is shown in Fig. 10 (a), that of the 8 scenarios, 6 scenarios have small different average path 

lengths between the application of DCMR and 0.9PC0.03PM in GA. The result of Table 3 (a) shows 

that the t-test results for average path length from 10 trials for Scenario 8 obtained a p-value of 0.071. 

This p-value is greater than the significance level (α) of 0.05, so the path lengths obtained by applying 

DCMR and 0.9PC0.03PM are the same. Nevertheless, in scenario 8, the average path length that 

implemented the 0.9PC0.03PM method is 0.729 standard deviations greater than the average path 

length that implemented the DCMR method or there is a medium effect size of the DCMR method to 

the average path lengths.  

For every scenario shown in Fig. 10 (b), the average number of generations needed to determine 

the path from the start point to the target point is less when DCMR is applied than when 0.9PC0.03PM 

is applied. This result is also supported by the t-test results of the number of generations to converged 

of the DCMR and 0.9PC0.03PM methods for Scenario 8 in Table 3 (b) which shows a p-value of 

0.006. Since the p-value obtained is smaller than the significance level (α) of 0.05, it can be concluded 

that when applying the DCMR method, the proposed GA algorithm finds target points faster than 
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when applying the 0.9PC0.03PM method. In addition, in Scenario 8, the average number of 

generations to converge for GA using the 0.9P method is 0.963 standard deviations higher than the 

number of generations to converge for GA using the DCMR method, or the DCMR method has a 

large impact on the average number of generations to converge. Practically, it validates that the DCMR 

method improves the GA's performance, enabling faster convergence in pathfinding.  

Genetic operators play a key role in determining the performance and behaviour of GA in terms 

of solution quality and convergence. The crossover operator combines genetic material from two 

parents to create offspring, potentially producing better solutions by merging advantageous traits. The 

crossover operator increases exploration of the solution space and prevents local optima traps when 

well-tuned. The mutation operator introduces random changes to individual solutions to maintain 

diversity in the population [60]. It helps avoid premature convergence by exploring new areas of the 

solution space. Applying crossover and mutation operators produces high-quality solutions that have 

better fitness which leads to faster convergence.  

Fitness value convergence in GA is influenced by multiple factors such as population diversity 

and selection pressure. High population diversity ensures the exploration of a larger solution space, 

avoiding premature convergence and local optima. Moderate selection balances exploitation and 

exploration, promoting stable and effective convergence. 

In accordance with other research [61], [62], applying the DCMR method means applying high 

mutation rates and low crossover rates at the beginning of GA which promotes exploration of the 

solution space, preventing premature convergence and helping to discover diverse candidate solutions. 

This is beneficial when the initial population lacks sufficient diversity. As the algorithm progresses, 

lowering the mutation rate and increasing the crossover rate emphasizes exploitation, allowing the 

algorithm to refine and converge toward an optimal or near-optimal solution by combining the best 

traits of the fittest individuals. This dynamic adjustment balances exploration and exploitation, 

improving GA performance by adapting to the problem's needs during different evolutionary stages 

and leading to faster convergence. With the combination of dynamic crossover and mutation rates 

throughout the generations, it is expected that with a different robot environment that is larger and has 

a different number and placement of obstacles, it is expected that the robot can find a path quickly. 

Since the DCMR approach requires fewer iterations to get an optimal or nearly optimal solution, 

its faster convergence suggests that it has computational efficiency that can result in energy efficiency. 

The DCMR method's marginally improved average path lengths result in more effective routes in 

path-planning applications, which can lower delivery times and mobile robot operating expenses.  

3.4. Strengths and Limitations 

Although the DCMR method applied in the GA gave good results in this study, it should be 

further improved or tested when applied in more complex environments because too frequent 

adjustments can destabilize the search, causing the GA to lose diversity or fail to effectively explore 

promising areas. Applying the GA with larger populations may also cause the DCMR method to have 

little effect as larger populations already maintain diversity, reducing the need for high mutation rates 

[63]. 

4. Conclusions 

To dynamically modify the crossover and mutation rate parameters, we present a unique 

deterministic approach in the design of GA and parameter selection in GA. The crossover rate and 

mutation rate parameters vary linearly without human input or feedback, according to the DCMR 

mathematical equation. Ten trials in eight different robot work environment settings show that the 

DCMR method majority outperforms 0.9PC0.03PM in pathfinding. Both methods produced the same 

completeness and optimal path length in every scenario. Scenario 5-8 obtained a better average 

shortest path when applying the DCMR method. The time to convergence achieved by implementing 

the DCMR method in GA was somewhat superior to those acquired by using the 0.9PC0.03PM 
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method without additional computational costs. In comparison to the 0.9PC0.03PM method, results 

in every scenario showed that applying the DCMR method in GA consistently found the best path, 

shortened average path lengths by 0.99%, and sped up algorithm convergence by 48.39%. DCMR 

method can reduce computing overhead making it useful in applications like robotics and autonomous 

vehicle navigation where making decisions in real time is crucial. 

By using the DCMR approach in GA, the problem of choosing the appropriate GA parameters 

was resolved and pathfinding effectiveness and efficiency were increased. This approach will produce 

efficient routes and computational efficiency for mobile robot path planning. The practical 

implications of DCMR's advancements in convergence speed and path optimisation are multifaceted, 

spanning industries like robotics, logistics, healthcare, and telecommunications. 

It is important to conduct a comparative analysis between the path-finding performance achieved 

through GA and that achieved through other mobile robot path-finding techniques. Several 

pathfinding techniques such as A*, D*, RRT, and PSO can be compared with GA to see which 

technique performs better, highlights the robustness of each technique in handling certain problems, 

and looks at the possibility of combining these techniques to solve certain problems. DCMR method 

in GA scales effectively to larger and more complex environments due to their adaptability and focus 

on balancing exploration and exploitation. However, challenges such as computational overhead and 

the need for precise parameter tuning must be addressed. Future research should continue to explore 

and combine the DCMR approach with other methods, particularly in dynamic and complex 

environments, to fully unlock its potential in optimising pathfinding and other applications. 
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