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Initial Value Problem

1. Introduction

In our present era, marked by unprecedented progress in both experimental and applied sciences,
the landscape of scientific exploration is continually expanding. A noteworthy facet of this evolution
is the rapid strides in artificial intelligence, a transformative force that holds promise for addressing
intricate mathematical challenges. In the dynamic realm of differential equations, researchers are
dedicatedly engaged in the enhancement and modernization of classical methods for approximating
both initial and boundary value problems [1]—-[10].

While the Runge-Kutta method maintains its supremacy as the go-to technique for solving dif-
ferential equations, researchers find themselves at the intersection of tradition and innovation. The
method, revered by many, serves as a robust benchmark against which emerging approaches are
scrutinized, particularly in the intricate domain of chaotic systems. Yet, as we traverse this era of ac-
celerating development, the exigencies of the moment compel us to not only acknowledge historical
methodologies but also to push beyond established boundaries, see the references to extend notions
as required [11]-[25], [25].

This contemporary epoch demands that we proactively propose and cultivate novel avenues for
approximating Ordinary Differential Equations (O.D.E.) with heightened precision and efficiency.
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The quest for advancements in computational techniques becomes more pronounced as we endeavor
to unlock deeper insights into complex mathematical models and systems [27]-[30]. In this quest
for progress, we are challenged to explore uncharted territories, seeking methodologies that not only
surpass the reliability of the Runge-Kutta method but also resonate with the evolving demands of
modern scientific inquiry. As we stand at the connection of tradition and innovation, our pursuit
is not merely about comparison but about carving new pathways that redefine the very structure of
mathematical approximation in the era of artificial intelligence, see [32]—[40].

After navigating through the terrain of established methodologies, our exploration is poised to
reach its zenith with the unveiling of a groundbreaking approach for approximating solutions to Ini-
tial Value Problems (I.V.P.). This pioneering method endeavors to strike a nuanced equilibrium be-
tween precision and computational efficiency, offering a compelling alternative to the conventional
techniques deliberated earlier. As we set forth on this transformative odyssey, we extend a warm invi-
tation to readers, urging them to accompany us in unraveling the complexities of numerical methods.
Together, let us pave the way for a new epoch in the realm of approximating solutions for I.V.P. In
this direction, we recommend the reader refer to [41]—[54].

The Euler-Maclaurin formula, a mathematical gem, stands as a testament to the intellectual
prowess of Euler [55] and Maclaurin [56] during the 18th century. Euler and Maclaurin indepen-
dently contributed to the development of the formula. Euler’s motivation stemmed from the need to
bridge the gap between discrete sums and continuous integrals, while Maclaurin’s work built upon
Euler’s foundations. The collaborative efforts of these mathematicians gave rise to a formula that has
since become a cornerstone in mathematical analysis. In fact, if the function f (z) is analytic in the
integration region, then the famous Euler-Maclaurin formula reads:

n—1 00
n FO)+ f(n B _ _

An elementary view of this formula was discussed extensively in [57]. The elegance of the
Euler-Maclaurin formula lies in its derivation, grounded in the fundamental technique of integration
by parts. By cleverly applying this method, Euler and Maclaurin created a formula that connects
discrete sums to continuous integrals. The derivation involves manipulating the discrete sums, intro-
ducing integral terms, and carefully handling the boundary terms to obtain a remarkably expressive
formula. This process showcases the ingenuity of these mathematicians in formulating a bridge be-
tween discrete and continuous mathematical concepts. The Euler-Maclaurin formula has garnered
considerable attention among researchers, prompting a diverse exploration of various alternative for-
mulations of the aforementioned theorem.

Darboux offered an alternative derivation, employing the mean value theorem to the integrals
within the formula. This approach provides a fresh perspective, revealing the connection between
discrete and continuous processes through the lens of the mean value theorem. Darboux’s insight
enhances our understanding of the formula, showcasing the various mathematical pathways leading
to its elegant expression.

Throughout this work, I is a real interval, a, b € I° (the interior of I) with a < b. Let P,, () be
the class of polynomials of degree n defined on an interval I C R.

The origin of the Euler-Maclaurin formula could be noted in the celebrated Darboux formula:
Let f (x) be analytic at all points of the interval [a, |, and let ¢ (t) € P,. If t € [0, 1] we have by
differentiation:
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Since ¢(™ (t) = ¢(™ (0) = constant, we integrate from 0 to 1 with respect to ¢ and obtain

6 (O)[f () — F (@)] = 3 (~1)* 7 (@ — a)* {5 (1) O (&) — 6= (0) f®) (0))

k=1 2
(1" (@ = a)" [T o) S (a1 (e~ a))dt

which is known as Darboux’s formula, see [58]. A clear discussion of this formula was also described
significantly in [59].

The Euler-Maclaurin formula stands as a mathematical beacon, guiding researchers and practi-
tioners through the intricacies of mathematical analysis. Its significance lies not only in its historical
origins but also in its pervasive influence on contemporary mathematics and physics. Mathemati-
cians, physicists, and engineers continue to rely on the formula for its ability to simplify intricate
calculations and provide accurate approximations. As a testament to its enduring importance, the
Euler-Maclaurin formula remains an indispensable tool in the mathematical toolkit, enriching our
understanding of both discrete and continuous mathematical phenomena.

In his construction of the Darboux reached an interesting expansion that is not less important
than the celebrated Euler-Maclaurin formula itself, indeed we have [58]:

(z—a) f'(a) = f(x) = f(a) = 52 [f (x) = [/ (a)]
n—1 m—1 2m
+ 21 (1) (QB,ZL)([I_a) [f(Zm) (:E) - f(2m) (a)] - Rn (f7 B2n) )

such that

(z — )2

Ry, (f, BZn) = W

1
/ Bon (t) f®) (a4t (z — a)) dt, 3)
0

Where By, (t) (k = 1,2,3,---) are the Bernoulli polynomials, and By, are the Bernoulli numbers.
Since the odd Bernoulli numbers Ba, 1 (k = 1,2, --) are all zeros the then above expansion could
be rewritten as:

f(@)=f(a)+(x—a)f (a) + G2 [f () — [ (a)]

n—1 2m 4
=% (1) Bt [ (2) — £ (@)] + R (1, B @

Accordingly; in this work, a general higher-order implicit method that outperforms both Taylor
and Runge—Katta methods in terms of accuracy is derived. An error bound for the Euler-Maclaurin
higher-order method, showcasing its stability, convergence, and greater efficiency compared to the
conventional Taylor and Runge-Katta methods is presented. To substantiate our claims, numerical
experiments are provided, highlighting the exceptional efficiency of our proposed method over the
traditional well-known methods.

2. The Euler-Maclaurin Method for Approximating Solutions of I.V.P

This method aims to obtain a new approximation for the well-posed initial-value problem

%:f(t,y), a<t<bh,  yla)=oa )

Suppose the solution y(t) to the initial-value problem has (2n + 1)-continuous derivatives. Ex-
panding y(t) in terms of its (2n)-th Euler-Maclaurin expansion about ¢; and evaluate at ¢;,1, we
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obtain . .
Y (tis1) =y (t) + (tip1 — ) () + BTy (440) — o (83)]

n—

_ . _+.\2m
- (= W [y®™) (tis1) — y@m™) (83)] (6)

m=1

Ot B () O (1 s (1 — 1) ds

We commence by establishing the stipulation that the distribution of mesh points is uniform
across the interval [a, b]. This requisite is guaranteed through the selection of a positive integer N,
from which the mesh points are subsequently chosen.

t; =a+h, foreach ¢ =0,1,2,---, N.

The step size or the uniform spacing between the points h = *5* = ;11 — ;.

Suppose that the unique solution to (5), has (2n + 1) continuous derivatives on [a, b], so that
for each i = 0,1,2,..., N — 1. Also, since y(t) satisfies the differential equation (6), Successive
differentiation of the solution, y(t), gives

y () =fty).y" @&)=f ty®),....y" @) =F& Dty ).

Substituting these results into (6) gives
y (tiv1) =y () + hf (b, y (6) + 5 [f (tivr,y (1)) — f (ti,y (£))]

n—1 o9m
- Zﬂ (—1)" 7 BT [£CmD) (850, y (bi41)) — £ (i, ()]

The difference-equation method corresponding to (7) is obtained by deleting the remainder term in-
volving &;.

(N

wo =
wies = wi + Rf (s () + B UF (i (o)) — £ (v ()] — AMOD (i),

foreach: =0,1,2,--- N — 1, where

n—1 B mh
MO (w; wig) = m2=1( Hm 2(27) {f(zm Y (tisr,y (tiv1)) — £ (ti,y (ti))}’

In particular, we are interested in the following case of (8).
2.1. The Euler-Maclaurin Method of Order 5
Setting n = 2 in (8), we get
wo = awiy1 = wi + hf (ts,ws) + L [f (tig1, wisr) — f (i, wi)] — %
[f (i, wisr) — f (L, wi)] + 25 [ (tigr, wia) — f7 (L, wi)]
foreachi =0,1,2,---N — 1.

©))

Proposition 1 The Euler-Maclaurin Method Order (9) is of order 5.

Proof 1 Substituting the exact solution in the Taylor expansion and simplifying, we get

. y(tivr) —y (ti) — hf (ti,y (t:) — & [4f (tir1,y (tiv1)) — f (ti,y ()]
iz [ty (ti)) = f (t,y (8)] = 320 [ (¢ i“iy( i+1)) = S (L, y (8))]
=y (t:) +hy' (t) + By () + oy () + By @ () + O (1)
—y (ti) + %y/ (tz) . (3h+h2) ( ) <h —6h3) y(4) ( ) 19) (h5)
_ 6k +h ///(( ) +0 (h5)

h%),

which means that (9) is of order 5.
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Remark 1 In general, using induction one can observe that the general Euler-Maclaurin Method is of O (h2”+1).

3. Convergence and Stability of the general Euler-Maclaurin method

To prove the convergence and the error bound of the general Euler-Maclaurin Method (8), we need the
following key lemma [60],[Lemma 5.8, p.270].

Lemma 1 If s and ¢ are positive real numbers, {a; }%_; is a sequence satisfying ag > —t/s and
. t t
ai+1 <exp((1+1)s) (ao + s) -5

In the next result, we prove that the Euler-Maclaurin method of order 2n is convergent and an error bound
is derived.

Theorem 1 Suppose f(*) (0 < k < 2n — 1) are continuous and satisfy Lipschitz condition with constant Ly,
on

D:={(t,y):a<t<b —o0<y<oo},

and that a constant M exists with | f(2) (t,y(t))| < M, for all ¢ € [a,b], where y(t) denotes the unique
solution to the initial-value problem

Yy =f(ty), a<t<b,  yla)=a.

Let wg,wq, - - ,wy be the approximations generated by the Euler-Maclaurin method (8) for some posi-
tive integer N. Then, the general Euler-Maclaurin method described in (8) is convergent.

Proof 2 When i = 0, the assertion is correct, as it holds that y(¢y) = wo = «. Otherwise, from (6), we have

y(t_lerl) y (ti) + hf (ti,y (8) + 5 [f (tigr,y (tig1)) = f (8, y (1))
- 21 (-n™mt szihm [FCm=D i1,y (ti1)) — FOD (i, ()]

2n+1
+}22n)' 0 Y Bay (5) M) (t; + 5 (tig1 — t)) ds
fori =0,1,--- , N — 1, and from the equations in (§),

Wiy1 = w; + hf (ti,w;) + % f (tipr, wig1) — f (ts, ws)]
n—1 m— am
- m2:31 (-n™t % [f(2m71) (tig1, wip1) — fE™1) (i, wi)]
foreachi =0,1,2,--- N — 1. Utilizing the notations y; = y(¢;) and y;+1 = y(t;+1), we deduce the following

by subtracting these two equations:

Yitl — Wil = Yi — Wi + hf (tivyz) - h (tmwi)
2 [f (i1, yig1) — f (b, wign)] = 5 1f (b ws) — f (ti, ws)]

n—1 — om 3
- 2—1 (-t % [FCm=D (i1, yier) — O™ (g1, wis)]
- n=1 2m
- Z (-pymt % (£ (ti,ys) — FO™) (ti, wi)]
=1 2n+41
h(Qn), fO BQn ) f(2n) (ti + s (ti+1 — tz)) ds

Employing the triangle inequality, we have

[Yir1 — wiv1| = |yi —wil + h|f tzayz) — f (ti, w;)]
|f( it Yig1) — f (v, wig)| + 5 |f( i ¥i) — f (ti, w;)]

2m
+ E B(Qn}f) S (g, gigr) — FED (B, wiga)|
+ Z B21n |f(2m 1) (t yz) f(2m—1) (t“wl)|

+(’§{§' }f” V(i y (10))| [ 1Ban (5)] ds.
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Now, function f (m—1) (m = 1,2,--- ,2n — 1) fulfills the Lipschitz condition in the second variable with a
constant denoted as L := o max {L}, and {f(Z”“) (t,y ()| < M, so

Yiv1 — ’wz+1| < lyi — wi| + AL |y; — w;| + &L |yz+1 Wigt] + 2L |y; — wi

h27n

+L- z Bonlh® iy —wipa| + L z Benlb ™ Jyi — wil
2n
+(gn),MfO | Bay, ( )|ds.
Combining the terms we get
[Yit1 — wita| < <hL+L Z lB?%})L' ) |Yir1 — wis1]
2m n
+ (1 +3hL+L- Z Bl ) (Jyi = wil) + &g M | Ban| -

Where we used the fact | Bz, (s)

[61]. Now, to seek simplicity, let us define
Sy (L,h) = (1 +3hL+L- z 'Bg;m’;,’"> :

Culah)i= (1= 0L -0 S 1),

and
n—1
‘BQ |h2m 1
E,(h):=2
w () m; )]

Before we go further, we need to remark that

$LhE, (h) =L Z \Bgmm?m <L- max {th} Z Do

- 1<m<n 1 (2m)!

L- max {h*™}. Z L

1<k<n—1 2” o Cem)!
S‘n’ 1\
=K [472 Tt 14 (47‘(2) } )

Where the last sum is evaluated using Maple Software; before that, we note that we have used the asymp-

totic approximation of even Bernoulli numbers [61], (—1)""" By, ~ (22(%2);,

for every positive integer m.
Moreover, as

1 2

Considering our ultimate interest in allowing A — 07, it is acceptable to presume that

1 2
~LhE, (h) < K - ————
2 (h) < K75

Where K is some fixed nonzero positive real number, without any adverse consequences. Consequently, we
can infer that

Sn(L,h 2n
|yi+1 - wi+l| S CnEL,h; . |y — 'UJZ| + mM|B%‘
Sy (L,h)—Cr(L,h n2n
B (1+%) i — wil + Gy M [Banl
LhEp(h 2n
= (L EE) -l — il + e M 1B
Employing Lemma 1, with s (h) = Lch%L(h’)l), t(h) = WM |Ban|, and a; = |y; — wj|, for each

7=0,1,2,--- | N, we observe that
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Since |yo — wo| = 0,

. LhEn(h) t(h)
lim ——————= =0 d =0.
o+ Cy (L, h) ’ a a0+ 5 (h)
then lim max |y;+1 — wit1| = 0, which means that that w;;, converges to y; 1, and thus the Euler-
h—0t+ 1<i<N
Maclaurin Method of Order 2n is converge as required.
Theorem 2 Under the assumption of Theorem 1. We have
t(h) L-hE, (h)
s = i < G (e (1 - 0) TP 10

foreachi=0,1,2,--- /N — 1.

Proof 3 The inequality follows from the last inequality in the proof of Theorem I, and since (i +1)h =
tiv1 —to = ti+1 — a, the error bound of this method is deduced from the last inequality in the proof of
Theorem 1 which reduces to (10).

Remark 2 According to the general theorem of stability of well-posed I.V.P., Theorem (1) implies that the
general Euler-Maclaurin method described in (9) is stable and consistent.

The primary significance of the error-bound formula presented in Theorem 1 lies in its direct proportion-
ality to the step size, h. As a result, reducing the step size should yield proportionally enhanced accuracy in the
approximations.

4. Perturbations of the General Euler-Maclaurin Method

Onmitted from the findings of Theorems 1 & 2 is the consideration of the impact of round-off errors when
selecting the step size. With diminishing A, an increased number of calculations is required, leading to a
higher expectation of round-off errors. In practice, the difference equation given in (8) is not employed for the
computation of the approximation to the solution, denoted as y;, at a mesh point ¢;. Instead, we employ an
equation of the following structure

UOZOL+50

~ 11
Vi1 = v; + hB™ (t;,0;) + 6ig1, (v

foreachi =0,1,2,--- N — 1, where

E(") (ti,vi) == f (ti,vi) + 5 [f (tig1, vigr) — f (£, v3)]
h27n 1

- Z Bamesr— [FC™ Y (tisr, 0i1) = FO™ Y (8, 04)]

for each i = 0,1,2,--- N — 1. Here, §; represents the round-off error linked to the value v;. Employing
techniques akin to those applied in the demonstration of Theorem 1, we can derive an error threshold for
the finite-precision approximations of y;, as determined by the Euler-Maclaurin method. Consequently, it is
feasible to formulate an analogous outcome to the following result.

Theorem 3 Let y(¢) denote the unique solution to the initial-value problem

y=f(ty), a<t<b  ylo)=a (12)
Let vg,v1,--- ,vny be the approximations generated by the Euler-Maclaurin method (8) for some positive
integer N. If |§;| < ¢ foreach ¢ = 0, 1,-, N and the hypotheses of Theorem 1 hold for (12), then
t(h) 0C(n,h) ( ((ti—a) L Enn) ) ((ti—a) Ll En )
— | < . ima) oty ) — 1) 5 174 T LR 13
|y1 rUl|_ (S(h) +LhEn(h> € +| 0|e ( )

foreach:=0,1,2,--- , N.
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Proof 4 The proof is similar to the proof of Theorem 1 applied for the difference equation(//).

On the other hand, it is convenient to note that the error bound (13) is no longer linear in h. In fact, since

. t(h) 0C, (L,h)
i, (s(h) " IhE, (h)> o

As the step size h tends toward infinitesimally small values, it is anticipated that the error will escalate.
Moreover, as the step size h is reduced beyond this critical value, there is a tendency for the total error in the
approximation to increase. Nevertheless, it is worth noting that, under typical circumstances, the magnitude
of the error, denoted by d, remains sufficiently small. Consequently, this established lower bound for & does
not significantly impact the efficacy or accuracy of the Euler-Maclaurin method in its computational opera-
tion. Despite the theoretical considerations regarding the escalation of error with decreasing h, the practical
implementation of the Euler-Maclaurin method remains robust within the determined range of step sizes.

5. Numerical Experiments

In this section, we apply the Euler-Maclaurin method of order 5 with various step sizes. to several I.V.P.

Example 1 The Euler-Maclaurin method of order 5 (9) is employed to approximate the solution of the initial-
value problem

y(t)=y—t"+1, 0<t<2,  y(0)=05 (14)

With specific parameters set to N = 10, h = 0.2, t; = 0.2¢, and wy = 0.5. This approximation is then
compared with the exact solution provided by y (t) = (¢t + 1)2 —0.5¢t.

Table 1: The table shows the absolute error in the three methods Taylor Method (TM) of order 4, Runge-
Katta (RK) method of order 4, and Euler-Maclaurin Method (EM) of order 5 applied in Example 1 with step
size h = 0.2.

Table 1. The absolute error with step size h=0.2

t; TMErrorx10~* RKErrorx10~> EM Errorx10~"

0.0 0.0000000 0.0000000 0.0000000
0.2 0.0137908 0.0052875 0.0025910
0.4 0.0336882 0.0114405 0.0063293
0.6 0.0617202 0.0185827 0.0115960
0.8 0.1005135 0.0268508 0.0188845
1.0 0.1534592 0.0363930 0.0288320
1.2 0.2249224 0.0473683 0.0422586
1.4 0.3205073 0.0599437 0.0602173
1.6 0.4473921 0.0742894 0.0840567
1.8 0.6147510 0.0905732 0.1155004
2.0 0.8342863 0.1089498 0.1567473

As we can remark the Euler-Maclaurin Method (9) gives much better approximations compared with
both the celebrated Taylor and Runge—Katta methods. Fig. | and Fig. 2 show the comparison between the
approximate solutions between the three methods and their corresponding absolute errors.

To improve our results we consider two more examples.

Example 2 The Euler-Maclaurin—Euler method (9) is employed to approximate the solution of the initial-value
problem

y' (t) =exp(t —y), 0<t<1, y(0) =1, (15)

With specific parameters set to N = 10, h = 0.1, ¢; = 0.1%, and wg = 1. This approximation is then compared
with the exact solution provided by y (t) = In (exp(t) + e~! —1).
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Exact vs. Numerical Solutions

® Euler-Maclaurin solution of order 5
Taylor solution of order 4

Runge-Kutta solution of order 4
Exact solution

0 0.5 1 15 2
t

Fig. 1. Example 1: The exact solution compared with the Euler-Maclaurin, Euler-Maclaurin, and Taylor
Methods of order 2 with stepsize h = 0.2

12 x10* Absolute error of y(t)

—Euler-Maclaurin solution of order 5
— Taylor solution of order 4
1+ Runge-Kutta solution of order 4

Absolute Error of y(t)

0 0.5 1 15 2
t

Fig. 2. Example 1: Absolute errors of the Euler-Maclaurin, Euler-Maclaurin, and Taylor Methods of order 2
with stepsize h = 0.2

Table 2. The absolute error with step size h=0.1

t; TM Errorx10~° RK Errorx10~° EM Errorx10~ 1

0.0 0.0000000 0.0000000 0.0000000
0.1 0.0899512 0.0442056 0.1256106
0.2 0.1642435 0.0919280 0.2321698
0.3 0.2201184 0.1430590 0.3126388
0.4 0.2555265 0.1973847 0.3615774
0.5 0.2692954 0.2545778 0.3756994
0.6 0.2612394 0.3141949 0.3543165
0.7 0.2321990 0.3756801 0.2995159
0.8 0.1840020 0.4383755 0.2158717
0.9 0.1193499 0.5015376 0.1101341
1.0 0.0416398 0.5643599 0.0096589

Table 2: The table shows the absolute error in the three methods Taylor method (TM) of order 4, Runge-
Katta (RK) method of order 4, and Euler-Maclaurin Method (EM) of order 5 applied in Example 2 with step
size h = 0.1.

As we can remark the Euler-Maclaurin method (9) gives much better approximations compared with both
the celebrated Taylor and Runge—Katta methods. The error increases. Fig. 3 and Fig. 4 show the comparison
between the approximate solutions between the three methods and their corresponding absolute errors.
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Exact vs. Numerical Solutions
. .

145 ® Euler-Maclaurin solution of order 5
Taylor solution of order 4
Runge-Kutta solution of order 4
Exact solution

t

Fig. 3. Example 2: The exact solution compared with the Euler-Maclaurin and Taylor Methods of order 2 with
stepsize h = 0.1
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Fig. 4. Example 2: Absolute errors of the Euler-Maclaurin’s and Taylor’s Methods of order 2 with step size
h=0.1

Example 3 The Euler-Maclaurin—Euler method (9) is employed to approximate the solution of the initial-value
problem

Yy (t)=v?, 0<t<09, y(0)=1, (16)

With specific parameters set to N = 10, h = 0.09, ¢; = 0.09¢, and wg = 1. This approximation is then

compared with the exact solution provided by y (t) = 1.

Table 3: The table shows the absolute error in the three methods Taylor Method (TM) of order 4, Runge-
Katta (RK) method of order 4, and Euler-Maclaurin Method (EM) of order 5 applied in Example 3 with step
size h = 0.09.

As we can remark the Euler-Maclaurin method (9) gives much better approximations compared with
both the celebrated Taylor and Runge—Katta methods. Fig. 5 and Fig. 6 show the comparison between the
approximate solutions between the three methods and their corresponding absolute errors. Moreover, it is
remarkable to note that the absolute error near discontinuity point ¢ = 1 increases more rapidly in both Taylor
and Runge—Katta methods.
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Table 3. The absolute error with step size h=0.09

t; TM Error RK Error EM Error
0.0  0.00000000 0.00000000  0.00000000
0.09 0.00000648 0.00000648  0.00000001
0.18 0.00001953  0.00001953  0.00000004
0.27 0.00004645 0.00004645 0.00000012
0.36  0.00010494 0.00010494 0.00000035
0.45 0.00024204 0.00024204 0.00000109
0.54 0.00060085  0.00060085 0.00000394
0.63 0.00170217 0.00170217 0.00001830
0.72 0.00600085 0.00600085 0.00012845
0.81 0.03088433 0.03088433 0.00190717
0.90 0.33989922  0.33989922  0.17750269

Exact vs. Numerical Solutions

100 ® Euler-Maclaurin solution of order 5
Taylor solution of order 4
Runge-Kutta solution of order 4

— Exact solution
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T I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
t

Fig. 5. Example 3: The exact solution compared with the Euler-Maclaurin and Taylor Methods of order 4 with
step size h = 0.09
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Fig. 6. Example 3: Absolute errors of the Euler-Maclaurin’s and Taylor’s Methods of order 4 with step size
h =0.09

6. Conclusion and Recommendation

In this study, we have introduced a novel approach for approximating I.V.P. Through the analysis of
method (8) and the examination of relevant examples, it has been shown that the Euler-Maclaurin method sur-
passes previously acknowledged methods, notably the well-known Taylor and Runge-Katta methods. More-
over, our extensive deliberations indicate that the Euler-Maclaurin method of order 5 outperforms the renowned
Taylor and Runge-Katta methods of order 4 as long as the analytic solution is required. This is evidenced by
the method’s ability to yield superior outcomes with reduced absolute error.
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The demonstrated superiority of the Euler-Maclaurin method extends beyond mere similarity, manifest-
ing in heightened stability and accelerated convergence. The empirical evidence presented underscores the
method’s robustness and efficiency in addressing diverse contexts within mathematical modeling and analysis.

Over the long term, the Euler-Maclaurin method (8) of order 2n + 1 consistently outperforms both the
Taylor and Runge-Katta methods, particularly when seeking analytic solutions. Additionally, the proposed
method exhibits competitiveness in various scientific contexts, as exemplified by Example 3, providing clear
evidence of its strong performance in the neighborhood of discontinuities compared to other known methods.
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