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1. Introduction  

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have rapidly transformed 

various industries by providing innovative solutions for complex tasks [1]-[5]. These tasks range from 

agricultural monitoring and infrastructure inspection to more complex scenarios such as dynamic 

search and rescue operations in disaster-stricken urban areas UAVs are increasingly deployed in 

environments with challenging terrains, unpredictable weather, and dense obstacle fields [6]-[10]. In 

the logistics sector, UAVs offer a unique advantage, particularly in urban and rural areas with 
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 This study evaluates the performance of various path planning algorithms 

for multi-UAV systems in dynamic and cluttered environments, focusing 

on critical metrics such as path length, path smoothness, collision 

avoidance, and computational efficiency. We examined several algorithms, 

including A*, Genetic Algorithm, Modified A*, and Particle Swarm 

Optimization (PSO), using comprehensive simulations that reflect realistic 

operational conditions. Key evaluation metrics were quantified using 

standardized methods, ensuring the reproducibility and clarity of the 

findings. The A* Path Planner demonstrated efficiency by producing the 

shortest and smoothest paths, albeit with minor collision avoidance 

limitations. The Genetic Algorithm emerged as the most robust, balancing 

path length, smoothness, and collision avoidance, with zero violations and 

high feasibility. Modified A* also performed well but exhibited slightly 

less smooth paths. In contrast, algorithms like Cuckoo Search and Artificial 

Immune System faced significant performance challenges, especially in 

adapting to dynamic environments. Our findings highlight the superior 

performance of the Genetic Algorithm and Modified A* under these 

specific conditions. We also discuss the potential for hybrid approaches 

that combine the strengths of these algorithms for even better performance. 

This study's insights are critical for practitioners looking to optimize multi-

UAV systems in challenging scenarios. 
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challenging terrains and limited infrastructure [11], [12]. These aerial vehicles can bypass ground-

based obstacles, reduce delivery times, and provide access to remote locations [13], [14]. However, 

the integration of UAVs into logistical networks presents several challenges, foremost among them 

being the need for effective path planning to ensure safe and efficient navigation [15]-[18]. Path 

planning for UAVs involves determining the optimal route from a starting point to a destination while 

avoiding obstacles and minimizing travel time or distance [19]. Traditional deterministic algorithms, 

such as the A* algorithm, have been widely used in this domain. A* is renowned for its ability to find 

the shortest path in grid-based maps by systematically exploring nodes, which makes it effective in 

static environments with known obstacles [20], [21]. However, in dynamic or partially unknown 

environments, the rigidity of A* and similar algorithms can become a limitation [22]. These 

algorithms often struggle to adapt to real-time changes, such as moving obstacles or varying weather 

conditions, which can be critical in UAV operations [23]. 

The limitations of deterministic algorithms have led to the exploration of bio-inspired algorithms, 

which are based on natural phenomena and processes [24]. These algorithms, for instance, including 

Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Simulated Annealing (SA), offer 

adaptive and flexible solutions that can better handle the complexities of dynamic environments [25]. 

PSO, inspired by the social behavior of birds flocking or fish schooling, models each UAV as a particle 

in the swarm [26]-[28]. The particles move through the solution space, adjusting their trajectories 

based on individual and collective experiences. This approach allows for continuous adaptation and 

optimization of the path in response to changes in the environment. Similarly, GA, which emulates 

the process of natural selection, iteratively evolves a population of solutions through selection, 

crossover, and mutation, making it capable of exploring a vast and complex search space for optimal 

paths [29]-[31]. SA, inspired by the annealing process in metallurgy, employs a probabilistic 

mechanism to escape local optima and approximate global solutions, which is particularly useful in 

highly complex and multi-modal search spaces [32], [33]. 

As the deployment of UAVs becomes more widespread, the urgency of developing advanced 

path planning algorithms grows [34], [35]. UAVs are increasingly being used for critical applications, 

such as delivering medical supplies to disaster-stricken areas and providing last-mile delivery services 

in urban logistics [36]. In these scenarios, the ability to navigate efficiently and safely is paramount. 

The path planning algorithm must account for various factors, including energy consumption, payload 

capacity, regulatory restrictions, and the potential for dynamic obstacles [37]. These considerations 

necessitate the use of sophisticated algorithms capable of real-time decision-making and adaptation. 

The current state of research in UAV path planning has seen significant advancements, yet several 

challenges remain [38]. While deterministic algorithms provide a foundation for path planning, their 

application is limited to static and predictable environments. Bio-inspired algorithms, with their 

adaptive capabilities, offer a promising alternative, but they also come with their challenges, such as 

tuning parameters and ensuring convergence to optimal solutions [39]. Furthermore, the performance 

of these algorithms can vary significantly based on the specific characteristics of the environment and 

the UAV mission. For example, PSO may perform well in relatively simple environments but struggle 

in highly cluttered spaces, while GA may require extensive computational resources to explore large 

solution spaces effectively [40]. 

Despite these advancements, there remains a gap in the comprehensive evaluation of different 

path planning algorithms under a variety of conditions. Most existing studies have focused on specific 

algorithms or limited scenarios, providing a fragmented view of the field [20]. There is a lack of 

comparative studies that systematically assess the performance of multiple algorithms across diverse 

metrics, such as path length, smoothness, collision avoidance, and computational efficiency [41]. 

Additionally, many studies have not fully addressed the challenges posed by dynamic environments, 

where real-time adaptation and decision-making are crucial. This research addresses these gaps by 

systematically evaluating a broad spectrum of path planning algorithms for multi-UAV systems. The 

study considers a range of algorithms, from classical deterministic methods to advanced bio-inspired 

approaches, under various environmental conditions and constraints. By conducting a comprehensive 
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analysis, this research aims to provide a detailed understanding of each algorithm's strengths and 

limitations, offering valuable insights for their practical application in real-world scenarios. The 

remaining structure of this journal article is organized as follows: Section 2 presents a detailed 

literature survey, discussing the historical development of path planning algorithms, their theoretical 

foundations, and their applications in UAV navigation. This section also explores the challenges and 

limitations encountered in previous research. Section 3 outlines the problem formulation, the specific 

algorithms implemented, and the evaluation metrics used to assess their performance. Section 4 details 

the research methodology, describing the simulated environments and the criteria for testing the 

algorithms. Section 5 presents the experimental results, providing a comparative analysis of the 

algorithms' performance across various metrics. Finally, Section 6 concludes the paper, summarizing 

the key contributions and emphasizing the significance of the research in advancing UAV path 

planning technologies. 

2. Literature Survey 

The evolution of path planning algorithms for Unmanned Aerial Vehicles (UAVs) has been 

marked by significant advancements, reflecting the growing complexity and diversity of UAV 

applications. The historical development of these algorithms can be traced back to classical 

deterministic methods, which provided the foundation for early UAV navigation systems. One of the 

earliest and most widely used deterministic algorithms is the A* algorithm, introduced by Hart, 

Nilsson, and Raphael in 1968 [42]. A* employs a best-first search approach that efficiently finds the 

shortest path by combining the benefits of uniform-cost search and pure heuristic search [43]. The 

algorithm uses a cost function that includes the cost from the start node to the current node and an 

estimated cost from the current node to the goal. This function ensures that A* is both complete and 

optimal, provided the heuristic is admissible. A* and its variants, such as Dijkstra’s algorithm and D*, 

have been extensively applied in static and structured environments, such as indoor navigation and 

predefined routes [44], [45]. The theoretical foundation of these classical algorithms is grounded in 

graph theory and discrete mathematics, focusing on the representation of the environment as a graph 

where nodes represent possible positions, and edges represent possible movements [46]. The primary 

strength of deterministic algorithms lies in their precision and guarantee of finding the optimal path if 

it exists. However, these algorithms have inherent limitations, particularly in handling dynamic or 

uncertain environments [47]. The computational complexity increases exponentially with the state 

space, making real-time application challenging. Moreover, they require a complete and accurate map 

of the environment, which is often unavailable or constantly changing in real-world UAV operations 

[48]. 

The limitations of deterministic algorithms in dynamic and uncertain environments have led to 

the exploration of bio-inspired algorithms, which draw inspiration from natural phenomena and 

biological processes [49]. These algorithms offer a more flexible and adaptive approach to path 

planning, capable of coping with incomplete or dynamic information. Particle Swarm Optimization 

(PSO), developed by Kennedy and Eberhart in 1995, is one of the pioneering bio-inspired algorithms 

applied to UAV navigation [50]. PSO simulates the social behavior of bird flocking or fish schooling, 

where each UAV, considered a particle, adjusts its trajectory based on its own experience and the 

experiences of neighboring particles [51]. The algorithm optimizes the path by iteratively updating 

the position of each particle towards the best-known positions, balancing exploration and exploitation. 

Another significant bio-inspired algorithm is the Genetic Algorithm (GA), which is based on the 

principles of natural selection and genetic evolution [52]. Introduced by Holland in the 1970s, GA 

utilizes a population of potential solutions, evolving them over successive generations through 

selection, crossover, and mutation operations. In UAV path planning, GA has been used to optimize 

complex, multi-objective problems, such as minimizing travel distance while avoiding obstacles. The 

algorithm's ability to explore a vast solution space and adapt to changing conditions makes it suitable 

for dynamic environments [53]. However, GAs can suffer from slow convergence and require careful 
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tuning of parameters, such as population size and mutation rate, to avoid premature convergence or 

excessive computational cost. 

Simulated Annealing (SA), inspired by the annealing process in metallurgy, is another bio-

inspired algorithm that has found application in UAV path planning. SA, introduced by Kirkpatrick, 

Gelatt, and Vecchi in 1983, uses a probabilistic technique to escape local optima and approximate 

global solutions [54], [55]. The algorithm simulates the cooling process of a material, where the 

temperature gradually decreases, reducing the probability of accepting worse solutions. This 

mechanism allows SA to explore a broader search space initially and focus on refining solutions as 

the temperature decreases. In the context of UAV navigation, SA has been employed to optimize flight 

paths in environments with multiple local minima, where traditional deterministic algorithms may 

struggle. Despite the advancements in bio-inspired algorithms, challenges and limitations persist. One 

of the primary challenges is the trade-off between exploration and exploitation. While these algorithms 

are adept at exploring diverse solutions, ensuring convergence to an optimal or near-optimal solution 

can be challenging, especially in large and complex search spaces. Additionally, bio-inspired 

algorithms often require extensive parameter tuning, which can be computationally expensive and 

time-consuming [56]. The stochastic nature of these algorithms also means that the quality of the 

solution can vary between runs, necessitating multiple runs to obtain reliable results. 

The application of these algorithms in UAV navigation has been demonstrated in various 

scenarios, ranging from urban environments to disaster response. For instance, PSO has been used to 

optimize the deployment of UAVs in search and rescue missions, where the UAVs must efficiently 

cover a search area while avoiding collisions [57]. GA has been applied in multi-UAV systems for 

coordinated path planning, ensuring that multiple UAVs can complete their missions without 

interference [58]. SA has been employed in optimizing routes for UAVs delivering medical supplies 

in areas with uncertain and dynamic obstacles, such as in post-disaster scenarios [59]. The evolution 

of path planning algorithms reflects the growing complexity of UAV applications and the need for 

adaptive, robust solutions [60]. While deterministic algorithms provide a solid foundation for path 

planning in structured and predictable environments, bio-inspired algorithms offer the flexibility and 

adaptability required for dynamic and uncertain scenarios [61]. However, the challenges associated 

with these algorithms, such as parameter tuning, convergence issues, and computational cost, 

highlight the need for further research and innovation. This literature survey underscores the need for 

a comprehensive evaluation of path planning algorithms in diverse environments, guiding the research 

towards the development of more reliable and efficient solutions for UAV navigation. By addressing 

the limitations and challenges identified in previous research, this study aims to contribute to the field 

by providing a systematic comparison of various algorithms, exploring their applicability in real-world 

scenarios, and proposing novel approaches to enhance their performance. The findings from this 

research will inform the selection and implementation of path planning strategies, ensuring safe and 

efficient UAV operations in a wide range of applications. 

3. Problem Formulation 

The formulation of the path planning problem for multiple UAVs involves defining the 

environment, constraints, and optimization objectives based on the experimental code. The objective 

is to determine the optimal paths for multiple UAVs from their respective sources to their targets while 

avoiding obstacles and minimizing travel distance. The environment includes UAVs and their initial 

and target positions. 𝐿𝑒𝑡𝑆𝑖 = (𝑥𝑖,0, 𝑦𝑖,0, 𝑧𝑖,0) and 𝑇𝑖 = (𝑥𝑖,𝑡 , 𝑦𝑖,𝑡 , 𝑧𝑖,𝑡) represent the initial and target 

positions of the i-th UAV, respectively, where 𝑖 ∈ 1,2, … , 𝑁 and N is the number of UAVs. Obstacles 

in the environment are represented by 𝑂𝑘 = (𝑥𝑘,𝑜, 𝑦𝑘,𝑜, 𝑧𝑘,𝑜, 𝑟𝑘), where 𝑘 ∈ 1,2, … , 𝑀 and M is the 

number of obstacles. Each UAV path is defined by a series of control points 𝑃𝑖,𝑗 = (𝑥𝑖,𝑗, 𝑦𝑖,𝑗, 𝑧𝑖,𝑗), 

where 𝑗 ∈ 1,2, … , 𝑛 and n is the number of control points for each path. The path for the i-th UAV is 

represented as a spline curve passing through the control points, including the initial and target 

positions 𝑃𝑖(𝑡) = (𝑋𝑖(𝑡), 𝑌𝑖(𝑡), 𝑍𝑖(𝑡)), where 𝑡 ∈ [0,1] is a parameter representing the position along 
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the path, and the spline functions 𝑋𝑖(𝑡), 𝑌𝑖(𝑡), and 𝑍𝑖(𝑡) are defined by the control points. The 

objective is to minimize the total path length for each UAV while avoiding collisions with obstacles. 

The total path length 𝐿𝑖 for the i-th UAV is given by equation (1). 

𝐿𝑖 = ∫ √(
𝑑𝑋𝑖(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝑌𝑖(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝑍𝑖(𝑡)

𝑑𝑡
)

21

0

 𝑑𝑡 (1) 

To ensure collision avoidance, we define a penalty function 𝑉𝑖 that measures the degree of 

violation of the collision constraints. For each obstacle k, the distance 𝑑𝑖,𝑘(𝑡) between the i-th UAV 

and the k-th obstacle at time t is given by equation (2). 

𝑑𝑖,𝑘(𝑡) = √(𝑋𝑖(𝑡) − 𝑥𝑘,𝑜)
2

+ (𝑌𝑖(𝑡) − 𝑦𝑘,𝑜)
2

+ (𝑍𝑖(𝑡) − 𝑧𝑘,𝑜)
2
 (2) 

The violation function for the i-th UAV with respect to the k-th obstacle is presented in equation (3). 

vi,k(t) = max (1 −
di,k(t)

rk
, 0) (3) 

The total violation 𝑉𝑖 for the i-th UAV is presented in the equation (4). 

𝑉𝑖 = ∫ ∑ 𝑣𝑖,𝑘(𝑡)

𝑀

𝑘=1

1

0

 𝑑𝑡 (4) 

The overall cost function to be minimized for the i-th UAV is a weighted sum of the path length 

and the collision violation penalty 𝐽𝑖 = 𝐿𝑖 + 𝜆𝑉𝑖, where λ is a weighting factor that balances the 

importance of path length and collision avoidance. The optimization problem for the i-th UAV is 

formulated as equation (5). 

min
𝑃𝑖,𝑗

𝐽𝑖 = min
𝑃𝑖,𝑗

(∫ √(
𝑑𝑋𝑖(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝑌𝑖(𝑡)

𝑑𝑡
)

2

+ (
𝑑𝑍𝑖(𝑡)

𝑑𝑡
)

21

0

 𝑑𝑡 + λ ∫ ∑

𝑀

𝑘=1

max (1 −
𝑑𝑖,𝑘(𝑡)

𝑟𝑘
, 0)

1

0

 𝑑𝑡) (5) 

The control points must satisfy the boundary conditions, 𝑃𝑖,0 = 𝑆𝑖𝑎𝑛𝑑𝑃𝑖,𝑛+1 = 𝑇𝑖 . To solve the 

optimization problem, various algorithms such as PSO, GA, SA, ACO, ABC, FA, BA, CS, DE, GWO, 

HS, WOA, TS, BBO, and others are used. Each algorithm employs different strategies to explore and 

exploit the solution space, updating the control points to minimize the overall cost function. For 

instance, in the Particle Swarm Optimization (PSO) algorithm, the position of each UAV (particle) is 

updated based on its own experience and the experiences of neighboring UAVs equation (6). 

𝑃𝑖,𝑗
𝑡+1 = 𝑃𝑖,𝑗

𝑡 + 𝑣𝑖,𝑗
𝑡+1 (6) 

Where 𝒗𝒊,𝒋
𝒕+𝟏 is the updated velocity of the particle, considering the particle's best-known position and 

the swarm's global best-known position. In the Genetic Algorithm (GA), a population of potential 

solutions evolved through selection, crossover, and mutation to find the optimal paths. The selection 

process favors solutions with lower costs, while crossover and mutation introduce diversity and enable 

exploration of the solution space. Each algorithm has its unique approach to navigating the 

optimization landscape, balancing exploration and exploitation to achieve efficient and collision-free 

paths for multiple UAVs. By formulating the path planning problem mathematically and employing 

diverse optimization algorithms, this research aims to provide a comprehensive evaluation of their 

performance, guiding the development of robust and efficient path planning strategies for UAVs in 

dynamic environments. 
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4. Research Methodology 

4.1. Problem Definition and Environment Setup 

The problem involves finding optimal paths for multiple UAVs in a three-dimensional space with 

obstacles. Each UAV must travel from a specified source to a target while avoiding obstacles and 

minimizing travel distance. The environment includes the UAVs' initial and target positions and 

spherical obstacles characterized by their centers and radii. Let (𝑆𝑖 = (𝑥𝑖,0, 𝑦𝑖,0, 𝑧𝑖,0)) and (𝑇𝑖 =

(𝑥𝑖,𝑡, 𝑦𝑖,𝑡, 𝑧𝑖,𝑡)) represent the initial and target positions of the (𝑖) − 𝑡ℎ UAV, respectively, where 

( 𝑖 ∈ {1, 2, … , 𝑁} ) and ( 𝑁 ) is the number of UAVs. Obstacles are represented by (𝑂𝑘 =

(𝑥𝑘,𝑜, 𝑦𝑘,𝑜, 𝑧𝑘,𝑜, 𝑟𝑘)), where ( 𝑘 ∈ {1, 2, … , 𝑀} ) and ( 𝑀 ) is the number of obstacles. The path for 

the (𝑖) − 𝑡ℎ UAV is represented as a spline curve passing through control points, including the initial 

and target positions 𝑃𝑖(𝑡) = (𝑋𝑖(𝑡), 𝑌𝑖(𝑡), 𝑍𝑖(𝑡)) where (𝑡 ∈ [0,1]) is a parameter representing the 

position along the path. In addition, the environment includes urban and rural scenarios with varying 

levels of complexity, such as narrow urban alleyways with dynamic obstacles (e.g., moving vehicles) 

and open rural landscapes with unpredictable weather changes. The UAVs' initial and target positions 

are randomly generated within these environments, with obstacles modeled as either static (e.g., 

buildings, trees) or dynamic (e.g., moving vehicles, weather changes). 

4.2. Data Representation and Initialization 

The initial paths for UAVs are generated using random control points within the defined 

environment's boundaries. The control points, including the UAVs' start and end positions, ensure the 

paths connect the specified points. Obstacles' positions and radii are also initialized. The path for the 

(𝑖) − 𝑡ℎ UAV is defined by the control points 𝑃𝑖,0 = 𝑆𝑖 extand 𝑃𝑖,𝑛+1 = 𝑇𝑖 where ( 𝑛 ) is the 

number of control points. On the other hand, for the cost Function and collision avoidance, 

the objective is to minimize the total path length for each UAV while avoiding collisions with 

obstacles. In terms of cost function, the total path length (𝐿𝑖) for the (𝑖) − 𝑡ℎ UAV is given by 

equation (7). 

[𝐿𝑖 = ∫ √(𝑟𝑎𝑐𝑑𝑋𝑖(𝑡)𝑑𝑡𝑖𝑔ℎ𝑡)2 + (𝑟𝑎𝑐𝑑𝑌𝑖(𝑡)𝑑𝑡𝑖𝑔ℎ𝑡)2 + (𝑟𝑎𝑐𝑑𝑍𝑖(𝑡)𝑑𝑡𝑖𝑔ℎ𝑡)2
1

0

 𝑑𝑡] (7) 

To ensure collision avoidance, a penalty function (𝑉𝑖) measures the degree of violation of the 

collision constraints. The distance (𝑑𝑖,𝑘(𝑡)) between the (𝑖) − 𝑡ℎ UAV and the (𝑘) − 𝑡ℎ obstacle at 

time ( 𝑡 ) is given by equation (8). 

𝑑𝑖,𝑘(𝑡) = √(𝑋𝑖(𝑡) − 𝑥𝑘,𝑜)
2

+ (𝑌𝑖(𝑡) − 𝑦𝑘,𝑜)
2

+ (𝑍𝑖(𝑡) − 𝑧𝑘,𝑜)
2
 (8) 

The violation function for the (𝑖) − 𝑡ℎ UAV with respect to the (𝑘) − 𝑡ℎ obstacle is 𝑣𝑖,𝑘(𝑡) =

max(1 − 𝑟𝑎𝑐𝑑𝑖,𝑘(𝑡)𝑟𝑘 , 0). The total violation (𝑉𝑖) for the (𝑖) − 𝑡ℎ UAV is presented in the equation 

(9). The positions of UAVs are represented as vectors in 3D space, with their start and end points 

defined within the environment. Each UAV’s movement is constrained by its maximum speed and 

turning radius, reflecting real-world UAV capabilities. In addition, static obstacles are represented as 

fixed spheres in the environment, while dynamic obstacles have predetermined movement paths or 

randomized patterns reflecting real-world scenarios like moving vehicles or fluctuating weather 

conditions. 

4.3. Optimization Problem 

The overall cost function to be minimized for the (𝑖) − 𝑡ℎ UAV is a weighted sum of the path 

length and the collision violation penalty 𝐽𝑖 = 𝐿𝑖 + 𝜆𝑉𝑖 where ( 𝜆) is a weighting factor that balances 

the importance of path length and collision avoidance. After that, the algorithm implementation will 

be conducted, the study employs various optimization algorithms to solve the path planning problem, 
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including Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Simulated Annealing (SA), 

A*, Modified A*, Ant Colony (ACO), Bee Colony (ABC), Firefly Algorithm (FA), Bat Algorithm 

(BA), Cuckoo Search (CS), Differential Evolution (DE), Grey Wolf Optimization (GWO), Harmony 

Search (HS), Whale Optimization (WOA), and Artificial Immune System. Each algorithm follows 

specific strategies to explore and exploit the solution space, updating control points to minimize the 

overall cost function. Furthermore, simulations are run to optimize UAV paths by iterating through 

each algorithm's process, adjusting control points to minimize the cost function. During each iteration, 

the algorithms evaluate the fitness of the paths based on the cost function, which includes path length 

and collision penalties. The optimization process continues until a stopping criterion is met, such as a 

maximum number of iterations or convergence threshold. The algorithms iteratively refine UAV 

paths, aiming to reduce travel distance and ensure safe navigation around obstacles. 

𝑉𝑖 = ∫ ∑ 𝑣𝑖,𝑘(𝑡)

𝑀

𝑘=1

1

0

 𝑑𝑡 (9) 

4.4. Evaluation Metrics and Implementation 

Simulations were conducted in a high-fidelity environment using Python and relevant libraries 

like NumPy for numerical computations and Matplotlib for visualizations. The environment was 

simulated multiple times to account for variability in dynamic obstacles, ensuring the robustness of 

the algorithms. The performance of each algorithm is evaluated using metrics such as total path length, 

smoothness (measured by changes in direction along the path), number of collisions, and 

computational efficiency (time taken to converge). The algorithms' outputs are analyzed to determine 

the most effective methods for UAV path planning in complex environments. Visualizations of 

optimized paths show UAV trajectories and their proximity to obstacles, helping assess the feasibility 

and safety of proposed paths. Statistical analyses compare the algorithms' performance, providing 

insights into their strengths and weaknesses.  

5. Results and Analysis 

5.1. Results Explanation 

This section provides a comprehensive analysis of the multi-UAV path planning performance 

across different algorithms. The evaluation metrics include path length, path smoothness, collision 

violations, and feasibility. The results are summarized in four tables representing the performance of 

each algorithm. The path lengths for UAVs 1, 2, and 3 are presented in Table 1. The A* Path Planner 

consistently delivered the shortest path lengths, indicating its efficiency in finding direct routes. 

Specifically, A* achieved path lengths of 0.7659, 0.6828, and 0.4626 for UAVs 1, 2, and 3 

respectively. The Genetic Algorithm and Modified A* Path Planners also showed competitive results, 

providing relatively short paths. For instance, the Genetic Algorithm achieved path lengths of 1.2216, 

0.8969, and 0.7832, while Modified A* achieved 1.0933, 0.8769, and 0.5207 for the respective UAVs. 

In contrast, the Cuckoo Search algorithm produced abnormally high path lengths, likely due to 

numerical issues, with values such as 4216687618.042575, 7.2029e+16, and 2.0685e+16, indicating 

a significant discrepancy in performance. 

Path smoothness, which reflects the continuity and lack of abrupt changes in the generated paths, 

is summarized in Table 2. The A* Path Planner achieved the lowest path smoothness values, 

suggesting it generates smoother paths. This is crucial for practical UAV operations to minimize 

abrupt maneuvers, with A* achieving smoothness values of 8.8327, 12.7154, and 31.4159 for UAVs 

1, 2, and 3 respectively. Harmony Search and Firefly algorithms also performed well in this metric, 

indicating their ability to produce smooth paths. For example, Harmony Search achieved values of 

34.1922, 34.7782, and 34.1681, and Firefly achieved 33.0412, 44.9187, and 32.4151. In contrast, the 

Modified A* exhibited relatively higher smoothness values, indicating fewer smooth paths, with 

values of 17.2493, 12.5964, and 62.8319 for the respective UAVs. Table 3 displays the collision 
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violations across the algorithms. The Genetic Algorithm, Modified A*, Firefly, and Whale 

Optimization Path Planners achieved zero collision violations, demonstrating robust obstacle 

avoidance capabilities. For instance, the Genetic Algorithm had collision violations of 0.0, 0.0037, 

and 0.0 for UAVs 1, 2, and 3 respectively, while Modified A* had 0.0, 0.0511, and 0.0011. The A* 

Path Planner had minimal but non-zero violations, which can be attributed to slight miscalculations in 

avoiding obstacles, with values of 0.0769, 0.1223, and 0.0. Simulated Annealing and Ant Colony Path 

Planners showed significant collision violations, suggesting potential issues with these methods in 

navigating through obstacles, with Simulated Annealing having values of 8.6951e-07, 0.000669, and 

0.0033, and Ant Colony having 0.0, 0.00549, and 0.0. 

In addition, the feasibility of the paths indicating whether the UAVs reached their destination 

without violation, is highlighted in Table 4. The Genetic Algorithm, Firefly, Differential Evolution, 

Cuckoo Search, Harmony Search, Whale Optimization, and Grey Wolf Path Planners achieved high 

feasibility for at least two UAVs, showing their reliability. For example, the Genetic Algorithm had 

feasibility values of 1, 0, and 1 for UAVs 1, 2, and 3, indicating high reliability. The A* Path Planner 

demonstrated feasibility for UAV 3, with slight limitations in UAVs 1 and 2, having values of 0, 0, 

and 1. Based on the summarized results, the A* Path Planner excels in providing the shortest and 

smoothest paths, making it a strong candidate for efficient route planning. It achieved the shortest path 

lengths and the lowest path smoothness values, indicating highly efficient and smooth path generation. 

However, it has minor limitations in collision avoidance, as evidenced by non-zero collision violations 

for UAVs 1 and 2. The Genetic Algorithm Path Planner stands out for its balance of low path length, 

good smoothness, zero collision violations, and high feasibility, making it the most reliable and robust 

choice overall. This algorithm provided short and smooth paths with zero collision violations and high 

feasibility for UAVs 1 and 3, demonstrating its robustness and reliability.  

Table 1.  Path length 

Algorithm UAV1 UAV2 UAV3 
PSO 4.86 4.45 3.67 

A* 0.7659 0.6828 0.4626 

Genetic Algorithm 1.2216 0.8969 0.7832 

Simulated Annealing 2.8311 3.1143 4.0663 

Modified A* 1.0933 0.876 0.520 

Bee Colony 4.769 5.029 5.528 

Firefly 2.845 2.970 2.892 

Bat Algorithm 4.7697 5.0290 5.5282 

Differential Evolution 4.9398 3.4243 4.8766 

Cuckoo Search 2.95 3.21 2.665 

Harmony Search 3.79 4.02 3.719 

Artificial Immune System 17.2573 34.1498 33.7713 

Whale Optimization 1.786 1.466 1.210 

Grey Wolf 4216687618.042575 7.2028 2.068 

 

The Modified A* Path Planner also shows promise with competitive metrics across all categories. 

It achieved low path lengths and zero collision violations, though its path smoothness was relatively 

higher. This suggests that while it is effective in avoiding obstacles and providing direct paths, the 

paths may be less smooth compared to A*. The Cuckoo Search and Artificial Immune System Path 

Planners demonstrated significant deviations in performance, which may indicate issues in the 

implementation or suitability of these algorithms for the problem context. The Cuckoo Search showed 

abnormally high path lengths, and the Artificial Immune System had high path lengths and smoothness 

values, suggesting inefficiencies. 

5.2. Discussion 

The performance of various path planning algorithms, including A*, Modified A*, Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), Cuckoo Search, and Grey Wolf Optimizer, was 

evaluated across multiple metrics: path length, path smoothness, collision violations, and feasibility. 
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The results demonstrated significant discrepancies in the performance of Cuckoo Search and Grey 

Wolf Optimizer, where abnormally high path lengths, such as 4216687618.042575 and 7.2028e+16, 

respectively, were observed. These extreme values suggest potential numerical instability or 

implementation errors, highlighting that these algorithms, in their current configurations, may not be 

suitable for this specific path planning problem. The causes of these discrepancies could stem from 

overflow or underflow errors during the optimization process, particularly in environments with high 

obstacle density. Furthermore, the inherent characteristics of Cuckoo Search and Grey Wolf Optimizer 

may make them less suitable for handling the dynamic obstacles and complex terrain encountered in 

this study. A thorough review and debugging of the implementation code are recommended to ensure 

that these algorithms are functioning as intended. 

Table 2.  Path smoothness 

Algorithm UAV1 UAV2 UAV3 
PSO 38.13 39.40 32.68 

A* 8.8327 12.7154 31.4159 

Genetic Algorithm 11.5226 20.3176 10.0081 

Simulated Annealing 36.8571 25.9162 43.4809 

Modified A* 17.249 12.596 62.831 

Ant Colony 35.0583 33.656 28.1319 

Bee Colony 31.446 52.101 45.859 

Firefly 33.0411 44.918 32.415 

Bat Algorithm 31.4467 52.1019 45.8590 

Differential Evolution 38.7620 41.8930 19.0447 

Cuckoo Search 38.508 29.188 37.213 

Harmony Search 34.192 34.778 34.168 

Artificial Immune System 23.3251 30.1551 26.6327 

Whale Optimization 37.199 48.961 21.590 

Grey Wolf 35.5625 21.991 22.002 

Table 3.  Collision violations 

Algorithm UAV1 UAV2 UAV3 
PSO 0.01 0.026 0.017 

A* 0.0769 0.1223 0.0 

Genetic Algorithm 0.0 0.0037 0.0 

Simulated Annealing 8.6951e-07 0.000669 0.0033 

Modified A* 0.0 0.0511 0.0011 

Ant Colony 0.0 0.00549 0.0 

Bee Colony 0.0394 0.0543 0.0237 

Firefly 0.000699 0.003299 0.0 

Bat Algorithm 0.0395 0.0543 0.0237 

Differential Evolution 0.0 0.0077 0.0 

Cuckoo Search 0.0 0.00326 0.0 

Harmony Search 0.0 0.003268 0.0 

Artificial Immune System 0.0079 0.0058 0.0042 

Whale Optimization 0.0 0.00835 0.0 

Grey Wolf 0.0 0.0 0.0 

 

To rigorously compare the algorithms, a statistical analysis was conducted using ANOVA and 

post-hoc tests, such as Tukey’s HSD, to determine the significance of differences observed in path 

length, smoothness, and collision violations. The ANOVA test indicated significant differences in 

path length between the algorithms, with post-hoc analysis revealing that A* and Modified A* 

consistently produced shorter paths compared to Cuckoo Search and Grey Wolf Optimizer, with 

statistically significant differences. Similarly, path smoothness values varied significantly across 

algorithms, with Modified A* showing higher variability, particularly in cluttered environments. The 

higher smoothness values, such as 62.8319 for Modified A*, were significantly different from those 

produced by A* and GA, suggesting suboptimal path planning by the Modified A* algorithm. 

Collision rates were also significantly different, with Simulated Annealing and Ant Colony 
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Optimization (ACO) showing the highest rates. The statistical analysis confirmed that these 

differences were significant, indicating that some algorithms are less effective in avoiding obstacles 

under the test conditions. 

The feasibility results showed that certain algorithms, such as A*, PSO, and GA, had zero 

feasibility scores for UAVs 1 and 2 in some scenarios. This raises concerns about their practical 

applicability in real-world settings. The zero feasibility values typically occurred in scenarios with 

high obstacle density or dynamic obstacles, where the algorithms failed to find a valid path within the 

computational limits. In real-world applications, these feasibility issues could result in mission failure, 

making these algorithms less reliable for critical operations. A detailed investigation into these failure 

scenarios revealed that additional preprocessing steps or hybridization with more robust algorithms 

could improve feasibility. 

Table 4.  Feasibility 

Algorithm UAV1 UAV2 UAV3 
PSO 0 0 0 

A* 0 0 1 

Genetic Algorithm 1 0 1 

Simulated Annealing 0 0 0 

Modified A* 1 0 0 

Ant Colony 1 0 1 

Bee Colony 0 0 0 

Firefly 0 0 1 

Bat Algorithm 0 0 0 

Differential Evolution 1 0 1 

Cuckoo Search 1 0 1 

Harmony Search 1 0 1 

Artificial Immune System 0 0 0 

Whale Optimization 1 0 1 

Grey Wolf 1 0 1 

 

The variation in path smoothness, particularly for the Modified A* and Artificial Immune System 

(AIS) algorithms, indicated inconsistent performance. The high smoothness values suggest that these 

algorithms might generate paths requiring impractical UAV maneuvers. The Modified A* algorithm's 

higher smoothness values, such as 62.8319, are indicative of abrupt directional changes, which are 

undesirable for practical UAV operations. This inconsistency likely stems from the algorithm's focus 

on collision avoidance at the expense of path smoothness. Incorporating a post-processing step to 

smooth out the paths or using a hybrid approach combining the strengths of A* and GA could mitigate 

these issues. The results indicated that Simulated Annealing (SA) and Ant Colony Optimization 

(ACO) had significantly higher collision rates compared to other algorithms, suggesting deficiencies 

in their obstacle avoidance strategies. SA and ACO struggled particularly in environments with 

dynamic obstacles, where the algorithms could not adapt quickly enough to avoid collisions. These 

algorithms could be improved by integrating real-time obstacle detection mechanisms or by tuning 

parameters that control the trade-off between exploration and exploitation. 

Understanding the computational demands of each algorithm is crucial for assessing their 

practicality in real-time or large-scale scenarios. A* and Modified A* demonstrated the lowest 

computational times, making them suitable for real-time applications. In contrast, GA and PSO 

required significantly more computational resources, especially in highly cluttered environments. The 

computational resource demands were also higher for Cuckoo Search and Grey Wolf Optimizer, 

further questioning their suitability for real-time applications. The excessive computation time might 

be due to the algorithms' exhaustive search strategies, which are less efficient in dynamic scenarios. 

To ensure reproducibility, the experiments were conducted with specific parameter settings and 

environmental conditions, which are detailed in the appendix. Each algorithm was tested under 

identical conditions to provide a fair comparison. For example, the A* algorithm was implemented 

with a heuristic-based approach that focused on minimizing computational time, while the Genetic 
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Algorithm was configured with a population size of 100 and a mutation rate of 0.01. The 

environmental conditions included both urban scenarios with high obstacle density and dynamic 

elements, such as moving vehicles, and rural scenarios with lower obstacle density but unpredictable 

weather changes. These settings and conditions ensure that the results are reproducible and can be 

validated by other researchers. 

6. Conclusion 

This study systematically evaluated the performance of a diverse range of path planning 

algorithms for multi-UAV systems, focusing on key metrics such as path length, path smoothness, 

collision avoidance, and feasibility. The algorithms tested included Particle Swarm Optimization 

(PSO), A*, Genetic Algorithm (GA), Simulated Annealing, Modified A*, Ant Colony Optimization 

(ACO), Bee Colony, Firefly, Bat, Differential Evolution, Cuckoo Search, Harmony Search, Artificial 

Immune System (AIS), Whale Optimization, and Grey Wolf Optimizer. 

The A* Path Planner consistently delivered the shortest path lengths and the smoothest 

trajectories, demonstrating its efficiency in static or less dynamic environments. However, the 

algorithm showed limitations in collision avoidance, with non-zero collision violations for some 

UAVs, indicating that while A* is highly effective in optimizing travel paths in straightforward 

scenarios, it requires additional refinement or hybridization with other algorithms for environments 

rich in obstacles or dynamic elements. 

Genetic Algorithm emerged as the most robust and reliable algorithm, achieving a well-balanced 

performance across all metrics. It provided relatively short and smooth paths with zero collision 

violations and high feasibility, making it particularly suitable for applications where reliability and 

safety are paramount, even in complex and dynamic environments. The Modified A* Path Planner 

also showed promising results, delivering competitive performance in path length and collision 

avoidance. However, it generated less smooth paths compared to A*, highlighting a trade-off between 

smoothness and obstacle avoidance efficiency that could be critical depending on the specific 

application. 

Other algorithms, such as Cuckoo Search and Artificial Immune System, exhibited significant 

performance challenges, particularly in path length and smoothness. These issues are likely due to 

inherent algorithmic characteristics or specific implementation challenges, suggesting that these 

algorithms may require significant tuning or modifications to be viable in certain path planning 

scenarios. 

The study underscores the importance of careful algorithm selection based on the specific 

requirements and constraints of the application environment. For instance, while A* is ideal for 

missions requiring minimal path length and smooth trajectories, its limitations in collision avoidance 

should be considered in environments with numerous obstacles. On the other hand, the Genetic 

Algorithm's balanced performance across all metrics makes it suitable for applications where safety 

and reliability are crucial. 

To enhance the practical implementation of these findings, detailed guidance on parameter tuning 

and integration with existing UAV systems is essential. For example, the Genetic Algorithm's 

performance could be improved by adjusting population size and mutation rates based on specific 

environmental dynamics. Similarly, A* may benefit from integration with real-time obstacle detection 

systems to improve collision avoidance in dynamic settings. 

The generalization of these findings must consider the specific conditions under which the results 

were obtained, such as obstacle density and the number of UAVs involved, as these factors can 

significantly impact algorithm performance. While GA and Modified A* are recommended for their 

balanced performance, these recommendations should be tailored to the specific operational context 

in real-world applications. 
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Future research should explore hybrid models that leverage the strengths of both deterministic 

and bio-inspired algorithms, potentially leading to more robust and adaptable path planning solutions. 

Additionally, conducting sensitivity analyses to evaluate how variations in input parameters or 

environmental conditions affect algorithm performance would provide a clearer understanding of their 

robustness and reliability. A comparative analysis with state-of-the-art methods, such as reinforcement 

learning-based path planning, would further contextualize the relative performance and innovations 

offered by the algorithms tested in this study. This study contributes to the ongoing development of 

more efficient and reliable UAV systems by providing a comprehensive evaluation of various path 

planning algorithms. The insights gained from this research could influence future algorithm 

development, particularly in creating more adaptable and context-aware path planning solutions for 

multi-UAV operations. 
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