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1. Introduction  

Orbit transfer refers to the process of changing a spacecraft's initial orbit to reach a specific 

target orbit. After separation from the launch vehicle, a satellite is often placed close to, but not 

exactly on, its intended mission orbit. The spacecraft must change orbit one or more times to reach 

its precise mission orbit. Orbit transfer is often necessary for deployment, rendezvous with another 

spacecraft or asteroid, or to avoid potential threats. 

In recent years, the spacecraft orbit transfer problem has rapidly gained interest. [1] used the 

Levi-Civita coordinates to solve the orbit transfer and rendezvous problems. [2] studied minimum-
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 This paper presents the problem of fuzzy guaranteed cost tracking control 

for spacecraft orbit transfer with parameter uncertainties and additive 

controller gain perturbations and subject to input constraints, and 

guaranteed cost function. The goal is to perform a planar orbit transfer in 

a circular orbit, focusing on minimizing fuel usage while accounting for 

uncertainties in both the plant and controller. Spacecraft dynamics is 

based on the Keplerian two-body problem using polar coordinates, which 

allows long-distance maneuvers in circular orbit when the well-known 
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of motion, a Takagi-Sugeno (T-S) fuzzy model is proposed and a 

linearized model is established for the output tracking problem of the 

orbit transfer process. Issue related to the absence of a single equilibrium 
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multiple operating points is employed to develop the (T-S) fuzzy model 

through the fuzzy approach. Based on the parallel distributed 

compensation (PDC) approach, sufficient conditions for a fuzzy non-

fragile guaranteed cost control are derived. Using the Lyapunov theory, 

the controller objectives are formulated through linear matrix inequality 

(LMIs) which allows the system to be transferred into a convex 

optimization problem. The designed controller effectively accomplishes 

the orbit transfer process with minimal fuel consumption and maintains 

the performance level below a specified upper bound. Numerical 

simulations are conducted to demonstrate the effectiveness of the 

proposed method.  
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fuel direct two-impulses orbit transfers from Gateway to Low Lunar Orbit. [3] addressed the 

automated orbital transfer and hovering control using feedback compensation. [4] investigated a 

trajectory optimization of low-thrust interplanetary and Earth orbital transfers. [5] discussed the 

minimum-time low-thrust transfer between Earth orbits using vectorial orbital elements. [6] studied 

the optimization of minimum-time low-thrust transfers using convex programming. These studies 

focus on the nonlinear dynamics of spacecraft, which can be addressed using various nonlinear 

control and optimization methods. In the context of linearized dynamics, relative motion is widely 

applied to orbit transfer and rendezvous problems. The dynamic model is represented by a set of 

linearized differential equations: if the target orbit is nearly circular, the (C-W) equations are used 

[7]. For an eccentric target orbit, the Tschauner-Hempel (T-H) equations are applied. Both models 

are restricted by the limited distance between the spacecraft's initial and final positions, making 

them inappropriate for long-distance maneuvers. The dynamics of spacecraft motion in this 

research are described using polar coordinates, where the motion is represented by a set of 

nonlinear differential equations. This model is mainly used for long-distance navigation and 

enables a clear understanding of radial and transverse velocity changes during orbit transfers.  

On the other hand, the Takagi-Sugeno (T-S) fuzzy systems introduced by [8] are considered 

an effective way to model nonlinear systems using fuzzy logic. (T-S) fuzzy models can 

approximate any smooth nonlinear function with a high degree of accuracy, making them 

recognized as universal approximators [9], [10]. (T-S) systems are mainly based on fuzzy sets, 

fuzzy rules, and a collection of local linear models interconnected through fuzzy membership 

functions. The design procedure for the (T-S) model is achieved through the (PDC) concept [11], 

[12]. For each rule in the (T-S) fuzzy model, a linear feedback controller is specifically designed. 

This approach allows a more accurate approximation of nonlinear behaviors by combining local 

linear models, making it particularly useful in control systems and various other applications where 

managing uncertainty and nonlinearity is critical [13]-[17]. Furthermore, the gain-scheduling 

technique is a well-known technique for controlling certain classes of nonlinear systems and is 

commonly employed when a plant is subject to large changes in its operating state. The design 

method of gain scheduled controller involved selecting different operating points that reflect 

changes in system dynamics to cover the full range of the plant’s operating conditions. At each 

operating point, a linear time-invariant (LTI) controller is designed, and then the gains of the 

controller between these operating points are scheduled [18], [19]. In this research, the fuzzy 

technique based on the gain-scheduling approach is adopted to derive the linearized model of the 

equation of spacecraft motion described in polar coordinates. The strength of this model lies in its 

ability to accurately represent the original nonlinear system through high approximation using the 

fuzzy technique. Additionally, the gain-scheduling approach is well-suited for systems with 

significant state changes, making it effective for performing long-distance maneuvers. Another 

advantage is that the consequent part of a fuzzy rule operates as a linear dynamic subsystem, 

allowing the use of classical and well-developed linear control theory to address the spacecraft 

orbit transfer problem. 

Many uncertain factors such as external disturbances in space, equipment malfunctions, and 

measurement errors can compromise both the precision and security of the orbital transfer process 

making it challenging to determine the spacecraft's accurate position and velocity.  Furthermore, 

factors such as parameter drift, mass variation, and other factors affect the controller accuracy. The 

presence of these factors and their effects has inspired extensive research into orbital transfer 

control in the presence of uncertainties [20]-[23]. Furthermore, controller fragility can degrade the 

performance of the closed-loop system due to small variations in the controller design coefficients. 

Generally, avoiding perturbations during controller implementation is challenging due to factors 

such as inherent imprecision in analog systems, rapid changes in the operating point of a nonlinear 

system, the need for additional parameter tuning in the final controller setup, and other associated 

factors making it a critical aspect to address in practical controller design. Controllers designed can 

be very sensitive or fragile to errors in the controller coefficients, despite their robustness to plant 

uncertainties. In this research, the uncertainties are considered in both the controller gains and the 
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system dynamics. Significant efforts have been made to address the problem of designing uncertain 

non-fragile controllers [24]-[27]. However, the problem remains challenging.      

Guaranteed cost control is an approach that offers a significant advantage in the control 

system. This method provides an upper bound on a given performance index, ensuring that the 

degradation of system performance due to model and controller uncertainties will not exceed this 

predetermined bound. By guaranteeing this upper limit, the approach enables more robust control 

designs that can better handle uncertainties while meeting specified performance criteria.  

During a space mission, the capacity of the propellant equipment is another critical factor to 

consider, making it imperative to restrict energy usage during orbital maneuvers to conserve fuel 

and extend mission duration. The input constraint is an essential tool used to limit the fuel 

consumption of spacecraft during maneuvers. By imposing constraints on the control inputs, such 

as thrust levels, the control system can ensure that fuel usage is maintained within specified limits. 

This is particularly critical in space missions, where fuel is a limited and precious resource. Many 

research efforts have been carried out in this context to solve the minimum fuel orbit transfer 

problem using such constraints. [28], [29], studied a guaranteed cost control method for the homing 

phase of orbital rendezvous. The author utilized the (C-W) equations and accounted for 

uncertainties only within the system.  [30] proposed a robust guaranteed cost controller to solve the 

orbit transfer problem with small thrust consumption. The author focused on low Earth rendezvous 

control, considering uncertainty solely in the system. In [31], the problem of non-fragile guaranteed 

cost control for low-Earth spacecraft orbit transfer with uncertainty and small thrust is investigated. 

In [32], the non-fragile H∞ guaranteed cost control for spacecraft rendezvous is studied without 

considering the uncertainty in the system. [33] addressed the problem of non-fragile robust H∞ 

control for spacecraft rendezvous with external perturbation. The research efforts that have been 

reported addressed the relative motion for the problem of rendezvous between the chaser and 

target, whether for low Earth orbit or the homing phase. The application of a linearized model for 

closed-loop linear control in long-distance spacecraft maneuvers is rarely addressed in the existing 

literature.  

Based on the reported works, the existing results in the literature in terms of closed-loop linear 

control for the orbit transfer problem or spacecraft rendezvous are mainly using relative motion. 

Considerable attention has been devoted to investigating the relative motion control using the 

linearized dynamics where the (C-W) equation is mainly used for circular reference orbits. Here, it 

is well noticed that the precision of these linearized models decreases rapidly as the initial 

separation between initial and final positions increases. However, few results in the literature have 

presented the closed-loop linear control for long-distance orbital maneuvers, since the open-loop 

control methods are mainly intended for long-distance navigation processes.  An another 

motivation for the present research was the control of orbit transfer using intelligent control, since 

this type of control is rarely used in orbital maneuver control problems. 

Motivated by the previous discussions, this research addresses the problem of fuel minimum 

of orbit transfer maneuver with parameter uncertainties and controller gain perturbations. The 

dynamics of motion are described using the polar coordinates. To obtain a linearized model of the 

dynamic equation, the fuzzy theory approach is employed to approximate the nonlinearities in the 

equation of motion. The modeling is performed using the (T-S) paradigm by considering the gain-

scheduling principle that relies on selecting several operating points in the system. The resulting 

model more approximately represents the original nonlinear system with approximation defined by 

the fuzzy membership function, this type of fuzzy model has not been implemented in the literature 

for the orbit transfer process. To perform an orbit transfer from a known initial position to a desired 

final position, we developed an output tracking system to ensure that the spacecraft tracks the 

desired target position in the final orbit. As an improvement, this research presents a fuzzy gain-

scheduled (FGS) control to solve the problem of spacecraft orbit transfer with long-distance 

maneuvers. Given that designing a multi-objective controller for cases with uncertainties in both 

the system and the controller is challenging, this paper explores the development of a robust, and 

non-fragile fuzzy guaranteed cost state feedback controller. In addition to addressing uncertainties, 
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the designed controller focuses on minimizing fuel consumption by simultaneously considering the 

cost function and the input constraints. Based on Lyapunov theory, the sufficient conditions for a 

fuzzy, robust and non-fragile guaranteed cost controller are formulated using (LMI) framework. 

The closed-loop system is then converted into a stabilization problem, which is solved using a 

convex optimization method. Numerical simulations are presented, demonstrating two maneuver 

scenarios: from medium Earth orbit (MEO) to geostationary Earth orbit (GEO), and from low Earth 

orbit (LEO) to medium Earth orbit (MEO). Additionally, a comparison with an existing control 

method was carried out. These simulations confirmed the effectiveness of the proposed control 

design by achieving satisfactory tracking performance. 

The manuscript is structured as follows: Section 2 introduces the fuzzy modeling of the 

spacecraft orbit transfer dynamics, covering a brief explanation of the dynamical system modeling, 

selection of state variables, altitude, and velocity range, and a detailed discussion of the various 

control objectives. Section 3 describes the design of a fuzzy non-fragile guaranteed cost control 

strategy for the orbit transfer process, using the (PDC) scheme. In Section 4, a numerical example 

is provided to demonstrate the effectiveness of the proposed control method. Finally, Section 5 

concludes the manuscript. 

2. Problem Formulation 

A planar orbit transfer between two circular orbits is addressed in this manuscript, with the 

dynamic equation of motion described by polar coordinates. Utilizing the fuzzy approach, a (T-S) 

model is developed to represent the nonlinear dynamics of spacecraft motion. This model is 

characterized by fuzzy IF-THEN rules. Our objective is to design a controller for the orbit transfer 

problem from a given initial position to the desired position located in the final orbit. In accordance 

with the study's objectives, the spacecraft is considered to be a point-mass object, with a state 

vector completely determined by its position and velocity vectors (𝑟, 𝜐) as shown in Fig. 1. 

 

Fig. 1. Spacecraft trajectory for the orbit transfer mission 

The earth center is located at the origin of the xy-frame. The spacecraft's center of mass is at 

the origin of the (𝑒̂𝑟, 𝑒̂𝜃 , 𝑒̂𝑧) basis vector. The motion of the spacecraft is described by the following 

set of differential equations, considering the Keplerian two-body dynamic model [34]. 

𝑥̇ = 𝑓(𝑥, 𝑢, 𝑡) = {
𝑟̇ = 𝜐
𝜐̇ = 𝐺(𝑟) + 𝑢

 

Where, 𝑢 is the control vector of the spacecraft, and 𝐺(𝑟) is the gravitational acceleration vector. 

The position vector 𝑟with respect to an inertial frame is expressed in polar coordinates 𝑟and 𝜃, and 

the velocity vector 𝜐 is expressed in the radial-transversal reference frame by means of the radial 

𝜐𝑟and transverse 𝜐𝜃components respectively. Assuming the spacecraft orbit is circular and the 

dynamical equations of spacecraft motion are given by [6]. 
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𝑟̇ = 𝜐𝑟

𝜃̇ =
𝜐𝜃
𝑟

𝜐̇𝑟 = −
𝜇

𝑟2
+
𝜐𝜃
2

𝑟
+ 𝑢𝑟

𝜐̇𝜃 = −
𝜐𝑟𝜐𝜃
𝑟

+ 𝑢𝜃

 (1) 

 This equation describes the trajectory of a spacecraft in its orbit. The trajectory of spacecraft 

can be understood by examining how its position, velocity, and acceleration change over time. 

𝑢𝑟denotes the component of control thrust in the radial direction, u denotes the control component 

in the transversal direction, and𝜇is the Earth’s gravitational parameter.  

2.1. T-S Fuzzy Modeling of Equation of Motion 

According to (1), we define the state vector𝑋(𝑡) = [𝑟(𝑡), 𝜃(𝑡), 𝜐𝑟(𝑡), 𝜐𝜃(𝑡)]
𝑇, the control 

input vector 𝑈(𝑡) = [𝑈𝑟(𝑡), 𝑈𝜃(𝑡)]
𝑇, where, 𝑈𝑟 and 𝑈𝜃 are the control thrust along the redial and 

the transversal directions respectively, and the output vector 𝑌(𝑡) = [𝑟(𝑡), 𝜃(𝑡)]𝑇. A state-space 

representation for equation (1) can be expressed as follows. 

 
[
𝑋̇(𝑡)
𝑌(𝑡)

] = [
𝐴 𝐵
𝐶 0

] [
𝑋(𝑡)
𝑈(𝑡)

] (2) 

𝐴 =

[
 
 
 
 
 
 
0 0 1 0

0 0 0
1

𝑟

−
𝜇

𝑟3
0 0

𝜐𝜃
𝑟

0 0
−𝜐𝜃
𝑟

0 ]
 
 
 
 
 
 

, 𝐵 = [

0 0
0 0
1 0
0 1

] , 𝐶 = [

1 0
0 1
0 0
0 0

]

𝑇

. 

Our objective is to develop a (T-S) fuzzy model for equation (2), The methodology proposed 

in [35] is adopted for this paper. First, we select p operating points for the nonlinear system and 

create a (LTI) model for each of these operating points. Let 𝑧𝑙(𝑙 = 1, . . . , 𝑔) be a premise variable 

that recognizes the operating points. We will use z (t) to define the vector containing 

elements𝑧1(𝑡)⋯𝑧𝑔(𝑡). Let𝑀𝑙𝑖(𝑖 = 1, . . . , 𝑠) be fuzzy sets of𝑧𝑙and 𝑠 is the number of model rules. 

The fuzzy model of the plant for the ith operating point is represented by the subsequent fuzzy 

rules. Rule i. If  𝑧1 = 𝑀1𝑖 and … and𝑧𝑔 = 𝑀𝑔𝑖, then the plant system is described by. 

 
{
𝑋
.
(𝑡) = 𝐴𝑖𝑋(𝑡) + 𝐵𝑈(𝑡)
𝑌(𝑡) = 𝐶𝑋(𝑡) (i=1,...,s)

 (3) 

The pairs(𝐴𝑖, 𝐵, 𝐶) of the equation (3) are stabilizable and detectable. The matrix 𝐵 is 

constant, 𝐴 changes depending on the values of the radius 𝑟 and the velocity𝜐𝜃, the radius 𝑟(𝑡) and 

the transverse velocity 𝜐𝜃(𝑡)  are selected as the premise variables. Implementing the above-

mentioned approach to the equation of motion for the spacecraft, two levels and two values are 

assigned to each premise variable. These consist of low altitude ('low (𝑟𝑙)') and high altitude ('high 

(𝑟ℎ)') for the radius, along with small value ('small (𝜐𝜃𝑠)') and big value ('big (𝜐𝜃𝑏)') for the 

transversal velocity. The nonlinear model outlined in equation (1) can then be represented using a 

(T-S) fuzzy model incorporating 4(2)2 fuzzy rules. The ranges are specified as 𝑟𝑙 ≤ 𝑟 ≤ 𝑟ℎ and 

𝜐𝜃𝑙 ≤ 𝜐𝜃 ≤ 𝜐𝜃ℎ respectively. To cover all operating points, fuzzy rules were established for the 

following four operating points: (𝑟, 𝜐𝜃) = (𝑟𝑙 , 𝜐𝜃𝑠), (𝑟𝑙 , 𝜐𝜃𝑏), (𝑟ℎ, 𝜐𝜃𝑠), (𝑟ℎ, 𝜐𝜃𝑏), and a (LTI) model 

was constructed for each operating point. The operating points are selected based on two key 

criteria. The first is identifying specific points where significant changes in the system dynamics 

occur. The second is ensuring that these points encompass all critical operational regions, ranging 
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from very low Earth altitude and small spacecraft velocity to very high Earth altitude and big 

spacecraft velocity, covering a wide transfer range. 

Then, the T-S fuzzy model for the nonlinear system described in equation (2) is formulated 

through the subsequent four-rule fuzzy model. 

• Rule 1. If 𝑟 is low (𝑟𝑙) and 𝜐𝜃 is small(𝜐𝜃𝑠), then 

 {
𝑋
.
(𝑡) = 𝐴1𝑋(𝑡) + 𝐵𝑈(𝑡)
𝑌(𝑡) = 𝐶𝑋(𝑡)

 

• Rule 2 . If r  is low ( )lr  and 𝜐𝜃 is big(𝜐𝜃𝑏), then 

{
𝑋
.
(𝑡) = 𝐴2𝑋(𝑡) + 𝐵𝑈(𝑡)
𝑌(𝑡) = 𝐶𝑋(𝑡)

 

• Rule 3 . If r  is high ( )hr  and 𝜐𝜃 is small(𝜐𝜃𝑠), then 

{
𝑋̇(𝑡) = 𝐴3𝑋(𝑡) + 𝐵𝑈(𝑡)

𝑌(𝑡) = 𝐶𝑋(𝑡)
 

• Rule 4 . If r  is high ( )hr  and 𝜐𝜃 is big(𝜐𝜃𝑏), then 

{
𝑋
.
(𝑡) = 𝐴4𝑋(𝑡) + 𝐵𝑈(𝑡)
𝑌(𝑡) = 𝐶𝑋(𝑡)

 

𝜔𝑟(𝑟) and 𝜔𝜐𝜃(𝜐𝜃) represent the membership functions that characterize 𝑟 and 𝜐𝜃 

respectively. These membership functions for rules 1-4 are defined as follows 

{
𝜔𝑟(𝑟𝑙) =

𝑟(𝑡) − 𝑚𝑖𝑛𝑟(𝑡)

𝑚𝑎𝑥𝑟(𝑡)−𝑚𝑖𝑛𝑟(𝑡)
𝜔𝑟(𝑟ℎ) = 1 − 𝜔𝑟(𝑟𝑙)

 

{
𝜔𝜐𝜃(𝜐𝜃𝑠) =

𝜐𝜃(𝑡) − 𝑚𝑖𝑛𝜐𝜃(𝑡)

𝑚𝑎𝑥𝜐𝜃(𝑡)−𝑚𝑖𝑛𝜐𝜃(𝑡)
𝜔𝜐𝜃(𝜐𝜃𝑏) = 1 − 𝜔𝜐𝜃(𝜐𝜃𝑠)

 

where, 𝑟𝑙 and 𝑟ℎ represent 'low (l)' and 'high (h)' of 𝑟, respectively. However, 𝜐𝜃𝑠  and 𝜐𝜃𝑏 represent 

'small (s)' and 'big (b)' of 𝜐𝜃, respectively. Then, we introduce ℎ𝑖 as follows. 

 ℎ𝑖(𝑧(𝑡)) = 𝜔𝑟(𝑟) ∧ 𝜔𝜐𝜃(𝜐𝜃) (4) 

Where (𝑖 = 1, . . . ,4). Given that   represents the minimum operator in fuzzy logic, it follows. 

ℎ1(𝑧(𝑡)) = 𝜔𝑟(𝑟𝑙) ∧ 𝜔𝜐𝜃(𝜐𝜃𝑠) 

ℎ2(𝑧(𝑡)) = 𝜔𝑟(𝑟𝑙) ∧ 𝜔𝜐𝜃(𝜐𝜃𝑏) 

ℎ3(𝑧(𝑡)) = 𝜔𝑟(𝑟ℎ) ∧ 𝜔𝜐𝜃(𝜐𝜃𝑠) 

ℎ4(𝑧(𝑡)) = 𝜔𝑟(𝑟ℎ) ∧ 𝜔𝜐𝜃(𝜐𝜃𝑏) 

And the fuzzy membership functions𝜔𝑟, 𝜔𝜐𝜃 of 𝑟 and 𝜐𝜃 are illustrated in the following Fig. 2. 

Thus, the T-S fuzzy model which represents the nonlinear equation of spacecraft motion (1) is 

obtained as. 

 

{
𝑋
.
(𝑡) =∑ ℎ𝑖(𝑧(𝑡))[𝐴𝑖𝑋(𝑡) + 𝐵𝑈(𝑡)]

4

𝑖=1

𝑌(𝑡) = 𝐶𝑋(𝑡)

 (5) 
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Moreover, defining 𝛼𝑖 as 

 
𝛼𝑖(𝑧(𝑡)) ≜

ℎ𝑖(𝑧(𝑡))

∑ ℎ𝑖(𝑧(𝑡))
4
𝑖=1

 (6) 

Where 

𝛼𝑖(𝑧(𝑡)) ≥ 0,∑𝛼𝑖(𝑧(𝑡)) = 1

4

𝑖=1

 

Then, a polytopic fuzzy model is obtained that corresponds to the entire operating range, thus, 

the system can be described by. 

 

Fig. 2. Membership functions of 𝑟 and𝜐𝜃  

 

{
𝑋
.
(𝑡) =∑𝛼𝑖(𝑧(𝑡))

4

𝑖=1

{𝐴𝑖𝑋(𝑡) + 𝐵𝑈(𝑡)}

𝑌(𝑡) = 𝐶𝑋(𝑡)

 (7) 

2.2. Uncertainty Parameters 

Due to external perturbation forces existing in space and the detection errors of equipment, it 

becomes particularly difficult to accurately determine the velocity and position of the spacecraft. 

This difficulty can affect the accuracy of the control force. Additionally, there also exist some 

inevitable factors such as thrust errors due to incomplete fuel burning and potential parameter drift 

during spacecraft maneuvers. Considering these unmodeled uncertainties, the resulting system can 

be given by. 

 

{
𝑋
.
(𝑡) =∑𝛼𝑖

4

𝑖=1

(𝑧(𝑡))[𝐴̃𝑖𝑋(𝑡) + 𝐵𝑈(𝑡)]

𝑌(𝑡) = 𝐶𝑋(𝑡),  𝑖 = 1, . . . ,4.

 (8) 

Where 

𝐴̃𝑖 = 𝐴𝑖 + 𝛥𝐴𝑖 

𝛥𝐴𝑖 denote unknown time-varying matrices which are assumed to be norm bounded and 

tacking the form. 

𝛥𝐴𝑖 = 𝛷𝑖𝛬𝑖(𝑡)𝛤𝑖 

Where𝛷𝑖, 𝛤𝑖  are known constant matrices with suitable dimensions and 𝛬𝑖(𝑡) denote unknown 

time-varying matrices with Lebesgue measurable elements restricted by.   
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𝛬𝑖
𝑇(𝑡)𝛬𝑖(𝑡) ≤ 𝐼 

2.3. Output Tracking 

Defining a reference output𝑌𝑡𝑟(𝑡) = (𝑟𝑡𝑟(𝑡), 𝜃𝑡𝑟(𝑡)), the objective is to design a fuzzy output 

tracking controller such that the system output 𝑌(𝑡) can asymptotically track the reference 

position𝑌𝑡𝑟(𝑡). Let us define the output tracking error as. 

𝑙𝑖𝑚
𝑡→∞

(𝑌(𝑡) − 𝑌𝑡𝑟(𝑡)) = 0 

We aim to eliminate the positional tracking error by introducing an integral action as follows. 

𝑍(𝑡) = ∫ (𝑌(𝜏) − 𝑌𝑡𝑟(𝜏)
𝑡𝑓

0

)𝑑𝜏 

Therefore 

𝑍̇(𝑡) = 𝑌(𝑡) − 𝑌𝑡𝑟(𝑡) 
The resulting augmented system is formulated in the following form. 

 

{
𝑊̇(𝑡) =∑𝛼𝑖(𝑡)

4

𝑖=1

{(𝐴̄𝑖 + 𝛥𝐴̄𝑖)𝑊(𝑡) + 𝐵̄𝑈(𝑡)} + 𝐷𝑌𝑡𝑟(𝑡)

𝑌(𝑡) = 𝐶̄𝑊(𝑡)

 (9) 

Where 

𝛥𝐴̄𝑖 = 𝛷̄𝑖𝛬̄𝑖(𝑡)𝛤̄𝑖 

The augmented matrices in system (9) are given as below 

𝐴̄𝑖 = [
𝐴𝑖 0
𝐶 0

],  𝐵̄ = [
𝐵
0
],  𝐶̄ = [𝐶 0],  𝐷 = [

0
−𝐼
],  𝑊(𝑡) = [

𝑋(𝑡)
𝑍(𝑡)

], 

Furthermore, the augmented form of the uncertainty matrices are given as follows 

𝛷̄𝑖 = [
𝛷𝑖 0
0 0

],  𝛤̄𝑖 = [
𝛤𝑖 0
0 0

], 𝛬̄𝑖(𝑡) = [
𝛬𝑖(𝑡) 0
0 0

]. 

Consequently, we have 

𝛬̄𝑖
𝑇(𝑡)𝛬̄𝑖(𝑡) ≤ 𝐼 

Therefore, the equation (9) is formulated as follows 

 

{
𝑊̇(𝑡) =∑𝛼𝑖(𝑡)

4

𝑖=1

{(𝐴̄̃𝑖)𝑊(𝑡) + 𝐵̄𝑈(𝑡)} + 𝐷𝑌𝑡𝑟(𝑡)

𝑌(𝑡) = 𝐶̄𝑊(𝑡)

 (10) 

Where 

𝐴̄̃𝑖 = 𝐴̄𝑖 + 𝛥𝐴̄𝑖 

The fuzzy state feedback controller for the uncertain system (10) is deduced using the (PDC) 

stability concept as 

𝑈(𝑡) =∑𝛼𝑖(𝑡)

4

𝑖=1

[𝐾𝑖𝑥𝑋(𝑡) + 𝐾𝑖𝑧𝑍(𝑡)] 

Where, 𝐾𝑖 = [𝐾𝑖𝑥 𝐾𝑖𝑧] and 𝑖 = (1, . . . ,4). The fuzzy controller can be written as follows. 
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𝑈(𝑡) =∑𝛼𝑖(𝑡)

4

𝑖=1

𝐾𝑖𝑊(𝑡) (11) 

Considering the gain perturbations, the non-fragile controller is formulated as follows 

 

𝑈(𝑡) =∑𝛼𝑖(𝑡)

4

𝑖=1

[(𝐾𝑖 + 𝛥𝐾𝑖)𝑊(𝑡)] (12) 

Where 𝐾𝑖 denote the nominal gains and 𝛥𝐾𝑖 denote the gain perturbations which have the 

following form. 

𝛥𝐾𝑖 = 𝛩𝑖𝛥𝑖(𝑡)𝛱𝑖 

Where, 𝛩𝑖and 𝛱𝑖 are known constant matrices and 𝛥𝑖(𝑡) denotes unknown time-varying matrices 

bounded by. 

𝛥𝑖
𝑇(𝑡)𝛥𝑖(𝑡) ≤ 𝐼  

Therefore, the resulting closed-loop system can be described as follows. 

 

{
𝑊̇(𝑡) =∑𝛼𝑖(𝑡){(𝐴̄𝑖 + 𝛥𝐴̄𝑖) + 𝐵̄(𝐾𝑗 + 𝛥𝐾𝑗)𝑊(𝑡)}

4

𝑖=1

+ 𝐷𝑌𝑡𝑟(𝑡)

𝑌(𝑡) = 𝐶̄𝑊(𝑡)

 (13) 

2.4. Performance Cost and Energy Constraint 

Considering the limited capacity of the propellant storage, it is essential to impose constraints 

on the control input within specific limits. For this end, we address the input constraints for the 

orbit transfer process in both the radial and transverse directions as follows. 

 
{
−𝑈̄𝑟 ≤ 𝑈𝑟 ≤ 𝑈̄𝑟
−𝑈̄𝜃 ≤ 𝑈𝜃 ≤ 𝑈̄𝜃

 (14) 

Where, 𝑈𝑟 and 𝑈𝜃  define the 𝑟th and the 𝜃th element in the control input𝑈. 𝑈̄𝑟 and 𝑈̄𝜃  represent 

the upper limits on thrust generated by the spacecraft propellants along each axial direction. 

On the other hand, the quadratic cost is another significant requirement which is adopted in 

this paper. 𝑄 is the state weighting matrix and 𝑅 is the control weighting matrix, by specifying the 

𝑅 ≻ 0 and𝑄 ≻ 0, and considering the control law in (12), the performance level can be concisely 

formulated as. 

 
𝐽𝑜𝑡 = ∫ [𝑈𝑇(𝜏)𝑅𝑈(𝜏) +𝑊𝑇(𝜏)

𝑡𝑓

0

𝑄𝑊(𝜏)]𝑑𝜏 (15) 

Then, a fuzzy non-fragile guaranteed cost control law in the form (12) is synthesized such that 

the closed-loop system (13) achieves asymptotic stability and the performance level of the orbit 

transfer 𝐽𝑜𝑡 is less than or equals an upper bound 𝐽𝑜𝑡 . 

3. Controller Design 

A fuzzy gain-scheduled guaranteed cost controller is designed to solve the orbit transfer 

problem. The designed controller has to ensure the global stability of the closed-loop system over 

the selected operating range. In this research, the input constraint and the cost function are 

considered in addition to the uncertainties of the model and controller. Firstly, a fuzzy non-fragile 
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guaranteed cost controller (FNGCC) is designed to make the spacecraft track the reference position 

located in the final orbit. Then, an optimal fuzzy non-fragile guaranteed cost controller (OFNGCC) 

is designed to solve the orbit transfer with a bounded thrust and minimum performance level. The 

following Lemmas are recalled to be utilized in our later development.  

• Lemma 1 [36]  Given real matrices 𝐿, 𝐸 and S  of suitable dimension with 𝑆𝑇𝑆 ≤ 𝐼, then, for 

any positive scalar 𝜂 ≻ 0, 

𝐿𝑇𝑆𝐸 + 𝐸𝑇𝑆𝑇𝐿 ≤ 𝜂𝐿𝑇𝐿 + 𝜂−1𝐸𝑇𝐸  

• Lemma 2 [37] (Schur complement Lemma) Let 𝑍be a given symmetric matrix, the following 

statements are equivalents 

1. 1.𝑍 ≜ [
𝑍11 𝑍12
𝑍12
𝑇 𝑍22

] ≻ 0  

2. 𝑍11 ≻ 0,  𝑍22 − 𝑍12
𝑇 𝑍11

−1𝑍12  

3. 3.𝑍22 ≻ 0,  𝑍22 − 𝑍12𝑍22
−1𝑍12

𝑇  

• Lemma 3 Given real matrices𝐹, 𝐺of suitable dimensions, for any positive scalar 𝜀 the 

following inequality is satisfied 

[ 0 𝐺𝐹𝑇

𝐹𝐺𝑇 0
] ≤ [𝜀𝐺𝐺

𝑇 0
0 𝜀−1𝐹𝐹𝑇

] 

• Lemma 4 [38] The parameterized linear matrix inequalities  

∑∑𝛼𝑖𝛼𝑗

𝑘

𝑗=1

𝑘

𝑖=1

ϒ𝑖𝑗 ≺ 0 

Is fulfilled, if the following conditions are satisfied 

ϒ𝑖𝑖 ≺ 0 

1

𝑘−1
𝐷𝑖𝑖 +

1

2
(𝐷𝑖𝑗 + 𝐷𝑗𝑖) ≺ 0,

   
1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑘

 
Proposition 1 For the fuzzy uncertain system (13), if there exist a symmetric positive definite 

matrix𝑃, matrices𝐾𝑗,  (𝑗 = 1, . . . ,4) and a positive scalar 𝜆 such that, the following matrix 

inequality holds for all permissible uncertainties ∑ ∑ 𝛼𝑖(𝑡)𝛼𝑗
4
𝑗=1

4
𝑖=1 (𝑡). 

 [𝑃𝐴̃̄𝑖 + 𝐴̃̄𝑖
𝑇𝑃 + 𝑃𝐵̄(𝐾𝑗 + 𝛥𝐾𝑗) + (𝐾𝑗 + 𝛥𝐾𝑗)

𝑇𝐵̄𝑇𝑃 + 𝜆−1𝑃𝐷𝐷𝑇𝑃 + 𝑄 + (𝐾𝑗 + 𝛥𝐾𝑗)
𝑇𝑅(𝐾𝑗 + 𝛥𝐾𝑗)] ≺ 0 (16) 

Hence, the fuzzy control law 𝑈(𝑡) = ∑ 𝛼𝑖(𝑡)
4
𝑖=1 (𝐾𝑖 + 𝛥𝐾𝑖)𝑊(𝑡) is robust fuzzy non-fragile 

guaranteed cost controller of the closed-loop system (13), and the quadratic performance level (15) 

has an upper bound of. 

 
𝐽𝑜𝑡 = 𝑊

𝑇(0)𝑃𝑊(0) + 𝜆∫ 𝑌𝑡𝑟
𝑇(𝜏)

𝑡

0

𝑌𝑡𝑟(𝜏)𝑑𝜏 (17) 

Proof: Defining a Lyapunov function 

𝑉(𝑡) = 𝑊𝑇(𝑡)𝑃𝑊(𝑡) 

Taking the time derivative of 𝑉(𝑡), one has 

𝑉̇(𝑡) = 𝑊̇𝑇(𝑡)𝑃𝑊(𝑡) + 𝑊𝑇(𝑡)𝑃𝑊̇(𝑡) = ∑∑{(𝑊𝑇(𝑡) (𝐴̃̄𝑖 + 𝐵̄(𝐾𝑗 + 𝛥𝐾𝑗))
𝑇
+ 𝑌𝑡𝑟

𝑇(𝑡)𝐷𝑇)𝑃𝑊(𝑡)

4

𝑗=1

4

𝑖=1

+𝑊𝑇(𝑡)𝑃 ((𝐴̃̄𝑖 + 𝐵̄(𝐾𝑗 + 𝛥𝐾𝑗))𝑊(𝑡) + 𝐷𝑌𝑡𝑟(𝑡))} 

Applying Lemma 1, one obtains 

𝑌𝑡𝑟
𝑇(𝑡)𝐷𝑇𝑃𝑊(𝑡) +𝑊𝑇(𝑡)𝑃𝐷𝑌𝑡𝑟(𝑡) ≤ 𝜆

−1𝑊𝑇(𝑡)𝑃𝐷𝐷𝑇𝑃𝑊(𝑡) + 𝜆𝑌𝑡𝑟
𝑇(𝑡)𝑌𝑡𝑟(𝑡) 
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Therefore 

𝑉̇(𝑡) ≤∑∑𝛼𝑖𝛼𝑗 [𝑊
𝑇(𝑡) ((𝐴̄̃𝑖 + 𝐵̄(𝐾𝑗 + 𝛥𝐾𝑗))

𝑇
𝑃 + 𝑃 (𝐴̄̃𝑖 + 𝐵̄(𝐾𝑗 + 𝛥𝐾𝑗))

4

𝑗=1

4

𝑖=1

+𝜆−1𝑃𝐷𝐷𝑇𝑃)𝑊(𝑡) + 𝜆𝑌𝑡𝑟
𝑇 (𝑡)𝑌𝑡𝑟(𝑡)] 

From the inequality (16), the latter inequality can be changed as follows 

 𝑉̇(𝑡) ≤ 𝑊𝑇(𝑡){−𝑄 − (𝐾𝑗 + 𝛥𝐾𝑗)
𝑇𝑅(𝐾𝑗 + 𝛥𝐾𝑗)}𝑊(𝑡) + 𝜆𝑌𝑡𝑟

𝑇(𝑡)𝑌𝑡𝑟(𝑡) 

≤ −{𝑊𝑇(𝑡)𝑄𝑊(𝑡) + 𝑈𝑇(𝑡)𝑅𝑈(𝑡)} + 𝜆𝑌𝑡𝑟
𝑇(𝑡)𝑌𝑡𝑟(𝑡)

 (18) 

For 𝑄 = 𝑄𝑇 ≥ 0, 𝑅 = 𝑅𝑇 ≥ 0 and 𝜆 ≻ 0, we have 

𝑉̇(𝑡) ≤ 0 

From Lyapunov theory, the closed-loop fuzzy uncertain system in (13) is asymptotically 

stable. Integrating both sides of (18) from 0  to 𝑡𝑓, one obtains 

∫ {𝑊𝑇(𝑡)𝑄𝑊(𝑡) + 𝑈𝑇(𝑡)𝑅𝑈(𝑡)}
𝑡𝑓

0

 𝑑𝑡 ≤ 𝑊𝑇(0)𝑃𝑊(0) + 𝜆∫ 𝑌𝑡𝑟
𝑇(𝑡)𝑌𝑡𝑟(𝑡) 

𝑡𝑓

0

𝑑𝑡 

Therefore, the performance level otJ  in (17) can be obviously obtained. 

Proposition 2 [39] Consider the fuzzy system described in (13) with the fuzzy controller given 

by (12). The control thrust ( )U t  is enforced into a definite region under the following constraints 

−𝑈̄𝜅 ≤ 𝑈𝜅 ≤ 𝑈̄𝜅 ,  𝜅 = (𝑟, 𝜃) 

If there exist 𝛽 ≻ 0 , matrices 𝐾𝑗, and positive symmetric matrices 𝑃 and 𝐻𝑖 such that the 

matrix inequality (16) holds for. 

 𝑊(0)𝑃𝑊𝑇(0) ≤ 𝛽 (19) 

 
[

𝐻𝑖 (𝐾𝑗 + 𝛥𝐾𝑗)

(𝐾𝑗 + 𝛥𝐾𝑗)
𝑇 𝛽−1𝑃

] ≥ 0,  (𝑖 = 1,… ,4) (20) 

 (𝐻𝑖)𝜅𝜅 ≤ 𝑈̄𝜅
2,  𝜅 = (𝑟, 𝜃) (21) 

Then, 𝑈(𝑡) = ∑ 𝛼𝑖(𝑡)
4
𝑖=1 [(𝐾𝑖 + 𝛥𝐾𝑖)𝑊(𝑡)] is a fuzzy non-fragile guaranteed cost controller 

which fulfils the input constraint (14) of the controlled system (13). 

Proof: According to Proposition1, 𝑈(𝑡) is a fuzzy non-fragile guaranteed cost controller of the 

system (13), and 𝑃 is a Lyapunov matrix by which the stability of the closed-loop system is 

fulfilled. Hence, the state trajectory of the closed-loop system satisfies 

𝑊𝑇(𝑡)𝑃𝑊(𝑡) ≤ 𝑊𝑇(0)𝑃𝑊(0) ≤ 𝛽 

By Schur Complement, the matrix inequality (20) is equivalent to 

𝛽(𝐾𝑗 + 𝛥𝐾𝑗)
𝑇𝑃−1(𝐾𝑗 + 𝛥𝐾𝑗) ≤ 𝐻𝑖. 

Let us define the 𝜅th component of each matrix 𝐾𝑗 by 𝐾𝑗𝜅, one has 

‖𝑈𝑗𝜅(𝑡)‖2
2
= 𝑈𝑗𝜅

𝑇 (𝑡)𝑈𝑗𝜅(𝑡) = (𝐾𝑗𝜅 + 𝛥𝐾𝑗𝜅)
𝑇𝑊𝑇(𝑡)(𝐾𝑗𝜅 + 𝛥𝐾𝑗𝜅)𝑊(𝑡) 

= (𝐾𝑗𝜅 + 𝛥𝐾𝑗𝜅)
𝑇𝑃−1(𝐾𝑗𝜅 + 𝛥𝐾𝑗𝜅)𝑊

𝑇(𝑡)𝑃𝑊(𝑡) 

≤ (𝐾𝑗𝜅 + 𝛥𝐾𝑗𝜅)
𝑇𝑃−1(𝐾𝑗𝜅 + 𝛥𝐾𝑗𝜅)𝛽 ≤ (𝐻𝑖)𝜅𝜅 

Where (𝑖 = 1,… ,4),  (𝑗 = 1,… ,4),   𝑎𝑛𝑑  (𝜅 = 𝑟, 𝜃). 

From the inequality (21), it is obvious that the control law satisfies the input constraint (14).  
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Our next objective is to convert the obtained conditions in Proposition 1 and Proposition 2 to 

(LMIs). The following theorem is built on the basis of Lemma 4 and uses the aforementioned 

results to solve the robust fuzzy guaranteed cost tracking controller for the orbit transfer problem 

through convex optimization.  

Theorem 1 Considering the uncertain orbit transfer system in (13) and the control law in (12), 

under the input constraint (14),  the closed-loop system is asymptotically stable with an upper 

bound on the performance level, bounded thrust if there exist positive scalars 𝛽,𝜆,𝛾𝜄 where(𝜄 =

1, . . . ,3), matrices 𝑌𝑗and positive symmetric matrices X  and iH  with proper dimensions satisfying 

the following matrix inequalities. 

 𝛶𝑖𝑖 ≺ 0, (𝑖 = 1, . . . ,4) (22) 

 1

𝑘 − 1
𝛶𝑖𝑖 +

1

2
(𝛶𝑖𝑗 + 𝛶𝑗𝑖) ≺ 0, (1 ≤ 𝑖 ≠ 𝑗 ≤ 4) (23) 

 
[
1 𝑊𝑇(0)

𝑊(0) 𝑋
] ≥ 0 (24) 

 

[
𝐻𝑖 + 𝛾3𝛩𝑗𝛩𝑗

𝑇 𝑌𝑗 𝛱𝑗𝑋

∗ 𝑋 0
∗ ∗ 𝛾3𝐼

] ≥ 0, (𝑗 = 1, . . . ,4) (25) 

 (𝐻𝑖)𝜅𝜅 + 𝛾3𝑑𝑖𝑎𝑔{𝛩𝑗𝛩𝑗
𝑇} ≤ 𝑈̄𝜅

2, 𝜅 = (𝑟, 𝜃) (26) 

Where 

 

𝛶𝑖𝑗 =∑∑𝛼𝑖(𝑡)𝛼𝑗

4

𝑗=1

4

𝑖=1

(𝑡)

[
 
 
 
𝛹 𝛺12

𝑇 𝑋 𝛺14
∗ 𝛺22 0 0

∗ ∗ −𝛽𝑄−1 0
∗ ∗ ∗ 𝛺44]

 
 
 

 (27) 

And 

𝛹 = 𝑠𝑦𝑚{𝐴̄𝑖𝑋 + 𝐵̄𝑌𝑗} + 𝛾1𝛷̄𝑖𝛷̄𝑖
𝑇 + 𝛾2𝐵̄𝛩𝑗𝛩𝑗

𝑇𝐵̄𝑇 

𝛺12 = 𝑌𝑗 + 𝛾2𝛩𝑗𝛩𝑗
𝑇𝐵̄𝑇 

𝛺22 = −𝛽𝑅
−1 + 𝛾2𝛩𝑗𝛩𝑗

𝑇 

𝛺14 = {√𝛽𝐷 𝛤̄𝑖𝑋 𝛱𝑗𝑋} 

𝛺44 = {−𝜆𝐼 − 𝛾1𝐼 − 𝛾2𝐼} 

Then, the desired state-feedback controller is expressed by𝑈(𝑡) = ∑ 𝛼𝑗(𝑡)
4
𝑗=1 𝑌𝑗𝑋

−1𝑊(𝑡) . 

Proof: Considering the matrix inequalities (20) in the proposition 2, by doing a pre- and post-

multiplication by matrix𝑑𝑖𝑎𝑔{𝐼, 𝛽𝑃−1}, the latter matrix inequality is equivalent to. 

 
[
𝐻𝑖 (𝐾𝑗 + 𝛥𝐾𝑗)𝛽𝑃

−1

∗ 𝛽𝑃−1
] ≥ 0 (28) 

Defining 𝑋 = 𝛽𝑃−1  and 𝑌𝑗 = 𝐾𝑗𝑋 where(𝑗 = 1, . . . ,4), the matrix inequality (28) is obviously 

equivalent to. 

 
[
𝐻𝑖 𝑌𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗𝑋

∗ 𝑋
] ≥ 0 (29) 
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Applying Lemma 1 and Lemma 3, inequality (29) can be written as 

[
𝐻𝑖 + 𝛾3𝛩𝑗𝛩𝑗

𝑇 𝑌𝑗

∗ 𝑋 + 𝛾3
−1𝑋𝛱𝑗

𝑇𝛱𝑗𝑋
] ≥ 0 

Applying Lemma 2, LMI (25) is obviously obtained.  

[
𝐻𝑖 + 𝛾3𝛩𝑗𝛩𝑗

𝑇 𝑌𝑗

∗ 𝑋 + 𝛾3
−1𝑋𝛱𝑗

𝑇𝛱𝑗𝑋
] ≥ 0 

Furthermore, by using schur complement and taking 𝑋 = 𝛽𝑃−1, it follows that the inequality 

in (19) is equivalent to the inequality in (24). 

From Proposition 1, performing a Pre- and post-multiplication of 𝛽1/2𝑃−1 by the left-hand 

side of the inequality (16), one obtains 

∑∑𝛼𝑖

4

𝑗=1

4

𝑖=1

𝛼𝑗 {𝛽[(𝐴̄𝑖 + 𝛷̄𝑖𝛬̄𝑖𝛤̄𝑖) + 𝐵̄(𝐾𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗)]𝑃
−1 + 𝛽𝑃−1[(𝐴̄𝑖 + 𝛷̄𝑖𝛬̄𝑖𝛤̄𝑖) + 𝐵̄(𝐾𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗)]

𝑇
+ 

𝛽𝑃−1𝑄𝑃−1 + 𝛽𝜆−1𝐷𝐷𝑇 + 𝛽𝑃−1(𝐾𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗)
𝑇𝑅(𝐾𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗)𝑃

−1} ≺ 0 

The latter inequality can be further expressed as. 

∑∑𝛼𝑖

4

𝑗=1

4

𝑖=1

𝛼𝑗{𝐴̄𝑖𝑋 + 𝑋𝐴̄𝑖
𝑇 + 𝐵̄𝑌𝑗 + 𝑌𝑗

𝑇𝐵̄ + 𝛽𝑋𝑄𝑋 + 𝛽𝜆−1𝐷𝐷𝑇 + [(𝛷̄𝑖𝛬̄𝑖𝛤̄𝑖) + 𝐵̄(𝛩𝑗𝛥𝑗𝛱𝑗)]𝑋 

+𝑋[(𝛷̄𝑖𝛬̄𝑖𝛤̄𝑖) + 𝐵̄(𝛩𝑗𝛥𝑗𝛱𝑗)]
𝑇
+ 𝛽(𝑌𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗𝑋)

𝑇𝑅(𝐾𝑗 + 𝛩𝑗𝛥𝑗𝛱𝑗)𝑋} ≺ 0 

By applying the Schur complement and lemma 2, the latter inequality can be eventually written as. 

∑∑𝛼𝑖(𝑡)𝛼𝑗

4

𝑗=1

4

𝑖=1

(𝑡)

{
 
 

 
 

[
 
 
 
 𝛺 𝑌𝑗

𝑇 𝑋 √𝛽𝐷

∗ −𝛽𝑅−1 0 0

∗ ∗ −𝛽𝑄−1 0
∗ ∗ ∗ −𝜆𝐼 ]

 
 
 
 

 

+𝛾1 [

𝛷̄𝑖
0
0
0

] [

𝛷̄𝑖
0
0
0

]

𝑇

+ 𝛾2 [

𝐵̄𝛩𝑗
𝛩𝑗
0
0

] [

𝐵̄𝛩𝑗
𝛩𝑗
0
0

]

𝑇

+ 𝛾1
−1 [

𝛤̄𝑖𝑋
0
0
0

] [

𝛤̄𝑖𝑋
0
0
0

]

𝑇

+ 𝛾2
−1 [

𝐵̄𝛱𝑗𝑋

𝛱𝑗𝑋

0
0

] [

𝐵̄𝛱𝑗𝑋

𝛱𝑗𝑋

0
0

]

𝑇

}
 
 

 
 

≺ 0 

Where 𝛺 = 𝐴̄𝑖
𝑇𝑋 + 𝑋𝐴̄𝑖 + 𝐵̄𝑌𝑗 + 𝑌𝑗

𝑇𝐵̄𝑇 

Applying the Schur complement again, it is worth noticing that the above matrix inequality is 

equivalent to matrix inequality (27). That is 

∑∑𝛼𝑖(𝑡)𝛼𝑗

4

𝑗=1

4

𝑖=1

(𝑡)𝛶𝑖𝑖 ≺ 0,  

Therefore, the results of Theorem 1 are obtained from proposition 1 and proposition 2. 

Next, we analyze the upper bound of the performance level as specified in equation (15). 

Considering Theorem 1, the (LMIs) (22)-(26) are solvable, which means that a set of convex 

solutions (𝑋, 𝑌𝑗, 𝐻𝑖, 𝜆, 𝛽, 𝑆, 𝛾1, 𝛾2, 𝛾3) is thus defined. These (LMIs) can be solved using several 

types of convex optimization algorithms, such as the SDPT3 solver. Furthermore, to achieve the 

optimal guaranteed cost control with a minimum bound on the performance level, the following 

optimization problem is proposed. 

 𝑚𝑖𝑛
𝑋,𝑌𝑗,𝐻𝑖,𝜌,𝑆,𝑁,𝛽

𝛽 + 𝑡𝑟(𝑆) (30) 
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Subject to (LMIs) (22)-(26)   

[ 𝑆 𝜆𝑇𝑇

𝜆𝑇 𝜆𝐼
] ≥ 0 

If the given optimization problem has a feasible solution (𝑋, 𝑌𝑗, 𝐻𝑖, 𝜆, 𝛽, 𝑆, 𝛾1, 𝛾2, 𝛾3), then, the 

fuzzy control law 𝑈(𝑡) is an  optimal non-fragile guaranteed cost tracking controller of the 

uncertain system (13) guaranteeing a minimum upper bound on the performance level 𝐽𝑜𝑡 , with the 

control input bounded along each axis, where∫ 𝑌𝑡𝑟(𝜏)𝑌𝑡𝑟
𝑇(𝜏)

𝑡𝑓
𝑡0

𝑑𝜏 = 𝑇𝑇𝑇. 

Referring to [40], the minimization of the performance level 𝛽 + 𝑡𝑟(𝑆)  leads to the 

minimization of the performance level (15). Consequently, by solving the minimization problem 

(30) a minimum value of the performance level is definitely obtained. The proof can be found in 

[40]. 

• Remark 1:  From Theorem 1, it is worth noting that the gain matrices 𝐾𝑗 are derived directly 

by setting one common positive definite matrix to address different objectives. However, this 

approach tends to be conservative in its solutions. To obtain an optimal solution and reduce 

this conservatism, it is necessary to explore the distinct parameter-dependent Lyapunov 

functions approach. This approach has the potential to make the problem less conservative. 

• Remark 2: The proposed optimization problem focuses on enhancing the robust performance 

of orbit transfer by accounting for uncertainties and gain perturbations. The overall robustness 

of this approach will be improved for the orbit transfer process and has the potential to be 

extended to𝐻∞control while considering uncertainties, where the optimization problem would 

involve minimizing the overall disturbance level of the controlled system. Investigating orbit 

transfer control with 𝐻∞and 𝐻2 performance is a promising direction for future research. 

4. Presentation of Results 

In the simulation results section, four (LTI) models were developed for each operating point 

with the degree of satisfaction determined by equation (4). The membership functions are 

illustrated in Fig. 2 The four rule T-S fuzzy model as expressed in equation (3) is used to represent 

the nonlinear dynamics of spacecraft motion. The matrices 𝐴𝑖 , (𝑖 = 1, . . . ,4) of the four 

subsystems are determined as 

𝐴 1 =

[
 
 
 
 
 
 
0 0 1 0

0 0 0
1

𝑟𝑙

−
𝜇

𝑟ℎ
3 0 0

𝜐𝜃𝑠
𝑟𝑙

0 0
−𝜐𝜃𝑏
𝑟ℎ

0 ]
 
 
 
 
 
 

, 𝐴2 =

[
 
 
 
 
 
 
0 0 1 0

0 0 0
1

𝑟𝑙

−
𝜇

𝑟𝑙
3 0 0

𝜐𝜃𝑏
𝑟𝑙

0 0
−𝜐𝜃𝑏
𝑟𝑙

0 ]
 
 
 
 
 
 

, 𝐴3 =

[
 
 
 
 
 
0 0 1 0

0 0 0
1

𝑟ℎ

−
𝜇

𝑟ℎ
3 0 0

𝜐𝜃𝑠
𝑟ℎ

0 0
−𝜐𝜃𝑠
𝑟ℎ

0 ]
 
 
 
 
 

, 𝐴4 =

[
 
 
 
 
 
0 0 1 0

0 0 0
1

𝑟ℎ

−
𝜇

𝑟ℎ
3 0 0

𝜐𝜃𝑏

𝑟ℎ

0 0
−𝜐𝜃𝑏

𝑟ℎ
0 ]
 
 
 
 
 

 

According to the nonlinear system described in (2), only 𝐴 contains nonlinear parameters. 

Since the matrix𝐴 has two nonlinear parameters, four plant rules are assigned, with the fuzzy 

variables falling within the following ranges: 

𝑟 ∈ [𝑟𝑙 𝑟ℎ], 𝜐𝜃 ∈ [𝜐𝜃𝑠 𝜐𝜃𝑏]. 

Here, the range of 𝑟and 𝜐𝜃 are given as 6878 ≤ 𝑟 ≤ 42164 (𝐾𝑚) and3.0746 ≤ 𝜐𝜃 ≤ 7.612 

(𝐾𝑚/𝑠). The control input 𝑈(𝑡) is subjected to 

−102 ≤ 𝑈𝜅 ≤ 102,  𝜅 = (𝑟, 𝜃) 

The orbit transfer is analyzed by considering two different maneuvers: Starting with the first 

case (Case I), this case focuses on identifying the minimum performance level under nominal 

conditions. In the second case (Case II), the aim is to determine the minimum performance level for 

an orbit transfer while accounting for uncertainties and gain perturbations. The objective of this 

case is to demonstrate the robustness of our system. Additionally, a comparison with an existing 
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control method has been performed to validate our model. The weighting matrices𝑄 and 𝑅 are 

respectively selected as 1 × 10+3𝐼4×4 and 1 × 10+4𝐼2×2 for both cases. The diagonal elements of 

𝑄are chosen largely because the state variables are crucial in the system dynamics. The diagonal 

elements of𝑅are also used to penalize the control input. Higher values are selected in order to 

reduce the magnitude of the control inputs. 

4.1. Case I: Orbit Transfer with Nominal Conditions 

In this case, we assume that the spacecraft performs a transfer from its initial orbit with radial 

position 𝑟 = 24505.9 (𝐾𝑚) and transverse position 𝜃 =
3𝜋

2
 (𝑅𝑎𝑑) . Thus, the initial state vector 

can be written as 𝑊𝐼(0) =  [24505.9,
3𝜋

2
, 0,4.03304,0,0 ] 𝑇. Then, we assume that the tracking 

position located on the final orbit is defined as𝑌𝑡𝑟𝐼 = [42165,
𝜋

2
]
𝑇

. By solving the optimization 

problem (30) using the state and output vectors of this case, one obtains the upper bound of the 

cost 𝐽𝑜𝑡𝐼 =  2.714 × 10
+3. Consequently, the resulting gain feedback matrices 𝐾𝑖𝑐𝑎𝑠𝑒𝐼  are expressed 

as follows 

-3 -3 -2 -4 -5 -6

-4 -1 -2 -2 -6 -1 3

3.1169 10 2.6441 10 6.2103 10 3.3655 10 -7.1476 10 6.2267 10

2.9875 10 5.5827 10 1.4257 10 1.0403 10 9.5481 10 1.1921 10caseI
K

      
 

      
=

𝐾2𝑐𝑎𝑠𝑒𝐼 = [
-2.9187 × 10-3 2.4287 × 10-3 -5.8496 × 10-2 -8.2538 × 10-4 -6.6895 × 10-5 3.2871 × 10-6

-1.5552 × 10-4 -5.3420 × 10-1 -0.4916 × 10-1 -1.0433 × 10-1 -3.7362 × 10-5 -1.1319 × 10-3
]

-3 -4 -2 -5 -5 -6

-4 -1 -2 -3 -5 -43

-3.1423 10 2.0997 10 -6.2401 10 -4.8788 10 -7.1786 10 4.6064 10

9.9185 10 -4.2626 10 -3.4702 10 -8.8672 10 3.2690 10 -7.1360 10caseI
K

      
 

      
=

𝐾4𝑐𝑎𝑠𝑒𝐼 = [
-3.1433 × 10-3 2.1013 × 10-3 -6.2461 × 10-2 -1.1962 × 10-4 -7.1920 × 10-5 5.1959 × 10-6

7.4693 × 10-4 -4.2643 × 10-1 -8.1453 × 10-3 -8.8811 × 10-3 2.6453 × 10-5 -7.1390 × 10-4
] 

Then, tracking performance results associated are listed in the following Fig. 3 and Fig. 4. 

  

Fig. 3. Positional outputs for orbit transfer in nominal conditions 

  

Fig. 4. Velocity change for orbit transfer in nominal conditions 
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Fig. 3 illustrates the positional output of spacecraft characterized by radius 𝑟and anomaly𝜃. 

Fig. 4 depicts the velocity change of the spacecraft during the obit transfer process. It should be 

noticed that when the positional outputs of the system converge to the tracking outputs, the radial 

and transverse velocities instantly approach zero, signifying that the spacecraft has reached and 

maintained its tracking position.  

With the control law (12), the spacecraft starts the orbit transfer from its initial position 

(𝑟0, 𝜃0) = (24505.9, 4.712), with initial velocity (𝜐𝑟0 , 𝜐𝜃0) = (0, 4.03304)as depicted in Fig. 3 

and Fig. 4. It can be seen from Fig. 3 that the positional output of the spacecraft converges 

asymptotically to the tracking position (𝑟𝑡𝑟, 𝜃𝑡𝑟) at different points in time. Specifically, the radius 

converges to its reference in a time span of 400 𝑠, while the anomaly converges to its reference 

over a period of 1600𝑠. The radial position changes more rapidly than the angular position during 

an orbit transfer due to several factors, including the interaction between orbital velocity, 

conservation of angular momentum, and the shape of the orbit (which is often elliptical). The 

spacecraft's velocity is not uniform throughout the orbit, but varies based on its distance from the 

central body, resulting in more rapid changes in radial position relative to angular position. This 

can be explained by the fact that the spacecraft covers a larger distance per unit time in the radial 

direction compared to the angular direction due to its higher velocity.  

Fig. 5, illustrates the positional tracking errors of the spacecraft during its maneuver. These 

tracking results are obtained by incorporating the output tracking error𝑙𝑖𝑚 𝑒 (𝑡) = 𝑙𝑖𝑚
𝑡→∞

(𝑌(𝑡) −

𝑌𝑡𝑟(𝑡)) = 0 into the designed controller. It is important to emphasize that the spacecraft reaches its 

final orbit by reducing the radial trackinFigg error to zero 𝑙𝑖𝑚
𝑡→∞

(𝑟(𝑡) − 𝑟𝑡𝑟(𝑡)) = 0. Then, the phase 

difference between the transverse position and the desired position decreases as the transverse 

tracking error approaches zero 𝑙𝑖𝑚
𝑡→∞

(𝜃(𝑡) − 𝜃𝑡𝑟(𝑡)) = 0. When both errors reach zero, it indicates 

that the spacecraft has accurately reached the desired tracking position. 

The required input accelerations during the orbit transfer maneuver along each direction are 

depicted in Fig. 6. The maximum required values of thrust along 𝑟 - and 𝜃 -axis are 61.3 (𝑁/𝑘𝑔) 
and  41.3 × 10−2 (𝑁/𝑘𝑔) respectively, it is worth noting that both of thrust values are below the 

thrust upper bound. It can be concluded that the input constraint works correctly with the designed 

controller. 

Simulations were conducted to compare the (FNGCC) with the (OFNGCC) to show the better 

performance achieved. Using the nominal system with input constraints, the performance level 

of the (FNGCC) is determined by applying Theorem 1, while the optimal solution for the 

(OFNGCC) controller is obtained by solving the optimization problem in (30). The results for 

different upper-bound values are listed in Table 1. 

Table 1.  Upper bound values of the performance level 

Controller 𝑱̄𝒐𝒕 
FNGCC 2.9825 × 10+3 

OFNGCC 2.7140 × 10+3 

 

According to Table 1, the OFNGCC shows a more satisfactory performance level than the 

FNGCC, indicating that optimal guaranteed cost control has been achieved with the OFNGCC. 

On the other hand, analyses have been conducted to illustrate the effect of the input constraint 

on system performance. The results for different upper bound values on the nominal system are 

presented in Table 2. 

From Table 2, the analysis demonstrates how input constraints increase the upper bound of the 

performance level of the system. The performance level will likely be lower because the controller 

can apply optimal control without restrictions. 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1577 
Vol. 4, No. 4, 2024, pp. 1561-1583 

  

 

Sarah Nemmour (Fuzzy Control for Spacecraft Orbit Transfer with Gain Perturbations and Input Constraint) 

 

Table 2.  Upper bound values of the performance level on nominal system 

Nominal system 𝑱̄𝒐𝒕 
System Without IC 1.422 × 10+3 

System With IC 2.714 × 10+3 

 

  

Fig. 5. Positional tracking errors for orbit transfer in nominal conditions 

  

Fig. 6. Input acceleration for orbit transfer in nominal conditions 

4.2. Case II: Orbit Transfer with Uncertainty 

Assuming that the spacecraft moves from the initial low Earth circular orbit of radius 𝑟 =
6878(𝑘𝑚), and transverse position  = (𝑟𝑎𝑑) . Thus, the initial state vector can be expressed 

as𝑊𝐼𝐼(0) =  [ 6878,𝜋,0,7.612,0,0 ] 
𝑇. Then, we presume that the reference position is located on 

the final orbit and defined as𝑌𝑡𝑟𝐼𝐼 = [24505.9,0]
𝑇.  

According to the structure of the system matrices, the uncertainty matrices that describe the 

parameter errors of the system are of the form 

𝛷𝑖 = 𝜎 × [

1 0 0 1
0 1 0 1
1 1 0 0
1 0 1 1

], 𝛤𝑖 = 𝛿 × [

1 0 0 1
0 1 1 0
0 1 0 1
1 0 1 1

], 

Moreover, the uncertainty matrices representing the gain perturbations have the following form 

𝛷𝑖 = 𝜌 × [
1 1 0 0 0 0
1 0 1 0 0 0

], 𝛱𝑖 = 𝜏 × [
1 0
1 0

] . 

Where𝜎,𝛿,𝜌   and  𝜏 represent magnitudes of uncertainty by which we can add, remove or change 

the values of uncertainty parameters. We consider the following values 
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𝜎 = 1 × 10−3, 𝛿 = 1 × 10−2, 𝜌 = 1 × 10−2 and  𝜏 = 1 × 10−3 

The uncertainty matrices𝛷𝑖,𝛤𝑖, 𝛩𝑖 and 𝛱𝑖 are assumed to be equal for the four rules of the 

system.  Solutions to the optimization problem (30) give the minimum performance level𝐽𝑜𝑡 =

5.146 ∗ 10+3.  Then, the resulting gain matrices 
caseIIiK are listed as follows 

1

-0.013416 -0.044499 -0.1195 -0.0007686 -0.0006772 -0.00013302

-0.003351 -1.4067 -0.025648 -0.016105 -0.00019825 -0.0037992caseII
K =

 
 
 

 

𝐾2𝑐𝑎𝑠𝑒𝐼𝐼 = [
-0.013372 -0.048787 -0.11902 -0.0013695 -0.00067465 -0.00014664
-0.0031795 -1.4043 -0.023911 -0.016147 -0.00019073 -0.0037917

] 

𝐾3𝑐𝑎𝑠𝑒𝐼𝐼 = [
-0.013432 -0.019278 -0.11968 -0.00019756 -0.00067804 -5.4997e-05
-0.0045009 -1.2374 -0.037173 -0.013836 -0.00025345 -0.0030201

] 

𝐾4𝑐𝑎𝑠𝑒𝐼𝐼 = [
-0.01343 -0.017359 -0.11966 -0.00028145 -0.00067794 -4.9058e-05
-0.0044837 -1.2371 -0.036995 -0.013845 -0.00025283 -0.0030193

] 

Alternatively, according to [40], a conventional guaranteed cost memoryless state-feedback 

controller 𝐾𝑗
∗can also be obtained by the proposed model along with the minimum performance 

level𝐽∗ = 4.705 ∗ 10+3. However, compared to the method proposed in [40], the minimum 

performance level obtained through this paper is higher, due to the consideration of input 

constraints. Therefore, the resulting gain matrices 𝐾𝑖
∗are listed as follows. 

5

*

1 7 5

-0.023251 -0.0087141 -0.16163 -0.00086421 -0.0014812 -5.0134 10

-5.5223 10 -0.81999 -0.0033983 -0.020739 -2.6516 10 -0.0034184
K

−

− −

 
 

  
=  

𝐾2
∗ = [ -0.023243 -0.0041781 -0.16158 -0.0013507 -0.001481 -3.014 × 10-5

-0.00030937 -0.82006 -0.0053271 -0.020746 -4.9293 × 10-5 -0.0034183
] 

𝐾3
∗ = [ -0.023252 -0.017459 -0.16163 -0.00060163 -0.001481 -9.4245 × 10-5

0.00017788 -0.41936 -0.0025366 -0.019484 -9.214 × 10-6 -0.0013875
] 

𝐾4
∗ = [ -0.023252 -0.016425 -0.16163 -0.00067914 -0.0014811 -8.9235 × 10-5

0.00012501 -0.41942 -0.002869 -0.019485 -1.3101 × 10-5 -0.0013878
] 

Then, the tracking performance results for both control methods are presented in Fig. 7 and 

Fig. 8. 

  

Fig. 7. Positional outputs of orbit transfer 

Fig. 7, Fig. 8 provide a comparison between the results using the model developed in this 

research and the results using the method in [40]. Notably, these figures demonstrate that both 

methods can effectively meet the tracking requirements for position and velocity, which prove the 

validity of our model. Furthermore, for our model, the results demonstrate the robustness of the 

proposed model against model and controller uncertainties. It is also noted that the impact of the 

uncertainties on the system is more noticeable in the transverse direction than in the radial 
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direction. This can be explained by the fact that in polar coordinates, the angular component often 

requires more precise control because it governs the spacecraft's ability to maintain its orientation 

and trajectory. Uncertainties in the transverse direction can therefore have larger cascading effects 

than similar uncertainties in the radial direction. 

  

Fig. 8. Velocity change of orbit transfer 

Considering the uncertainty parameters, it's important to note that varying the parameter errors 

can lead to different results. If these parameters exceed certain values, the system may become 

unstable, rendering the problem unsolvable. Three scenarios have been considered to determine the 

permitted ranges of the uncertainty values: 

• Scenario 1: considering uncertainties in the model and controller, and setting all magnitudes 

equal (i.e., 𝜎 = 𝛿 = 𝜌 = 𝜏). The permitted range of all magnitudes is[0,     0.01]. However, in 

the case where (𝜎 ≠ 𝛿 ≠ 𝜌 ≠ 𝜏), the range of a parameter can be determined by changing that 

parameter and keeping the others constants. 

• Scenario 2: considering only model uncertainties (𝜌 = 𝜏 = 0) with(𝜎 = 𝛿), the permitted 

range of 𝜎 and 𝛿  is[0, 0.0125].    

• Scenario 3: considering only controller uncertainties (𝜎 = 𝛿 = 0) with(𝜌 = 𝜏), the permitted 

range of 𝜌and 𝜏 is[0, 0.011]. Alternatively, by considering the cases where (𝜎 ≠ 𝛿) 
and(𝜌 ≠ 𝜏), the range of one parameter can be determined by changing a parameter and 

holding the other constant for each scenario. 

Fig. 9 illustrates the input thrust required by our controller in comparison to the conventional 

controller. Despite the presence of uncertainties in the controller, the non-fragile controller requires 

less thrust due to the use of input constraints. Nevertheless, both systems maintain stability and 

provide good tracking performance, even in the presence of uncertainties. This demonstrates that 

the spacecraft control system is sufficiently robust to handle these uncertainties effectively. 

  
a. Radiale direction b. Transversal direction 

Fig. 9. Input acceleration of orbit transfer 
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Furthermore, It is important to highlight that the feasibility of the (LMIs) outlined in Theorem 

1 depends on the upper bound of thrust. Specifically, small values of 𝑈𝑟and 𝑈𝜃 might cause 

infeasibility of (LMIs) and the input constraint may not function correctly. As a result, it is 

imperative that the upper bound values for thrust along both axes remain greater than 25 (N/Kg). 

Another feasibility constraint is that the initial and final state values of the spacecraft must fall 

within the specified ranges chosen for this study. If the values are outside these ranges, the model 

may not function correctly. Therefore, it is necessary to adjust the ranges for other orbital transfer 

missions with initial or final state falls beyond these limits. 

Finally, to illustrate the complete orbit transfer, Fig. 10 depicts an overview of the whole orbit 

transfer trajectory. It is clear that the spacecraft is asymptotically transferred to the final orbit and 

reaches the designated tracking position. From the results obtained, it can be concluded that the 

fuzzy tracking control methodology offers satisfactory performance for the orbit transfer with the 

newly constructed model under limited thrust and minimum performance level, irrespective of 

whether the system is subjected to uncertainty and gain perturbations. 

  

a. Side view 1 b. Side view 2 

Fig. 10. Overview of orbit transfer trajectory 

5. Conclusion 

This paper has presented a fuzzy gain-scheduling guaranteed cost tracking control for 

spacecraft orbit transfer maneuver in a circular orbit, subject to parameter uncertainty, gain 

perturbations, and input constraint. The dynamics of spacecraft is described by polar coordinates. A 

(T-S) fuzzy approach based on the gain scheduling technique is used to linearize the spacecraft 

dynamics. A tracking design was implemented to enable the spacecraft to follow the reference 

position and achieve the final orbit. By applying Lyapunov theory, the orbit transfer problem is 

converted into a convex optimization problem with (LMI) constraints. With the designed 

controller, the orbit transfer process is successfully achieved with minimum thrust and performance 

level under a specified bound. The numerical examples have been conducted with four (LTI) 

models covering the entire operating range of the system. As the number of (LTI) models is 

increased, the fuzzy model more accurately represents the characteristics of the original system. 

However, this also makes it more challenging to find a solution that satisfies the (LMIs) in 

Theorem 1. Furthermore, this model is developed for planar orbit transfer maneuvers in a circular 

orbit, with the advantage of enabling any long-distance maneuver from the known initial orbit to 

the final orbit. Moreover, this model can also be applied to more complex missions, such as 

formation flying, or orbital rendezvous between two active spacecraft. It would be advantageous to 

implement a simultaneous stabilization control strategy, enabling the stabilization of multiple 

spacecraft within the formation or the orbital rendezvous. 
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