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1. Introduction 

Forecasting air temperature is a crucial task in various fields, including weather prediction, 

climate science, and environmental monitoring, with significant impacts on many sectors [1]-[5]. 

Accurate temperature forecasting can provide invaluable information for sectors such as agriculture, 

where precise temperature conditions can influence crop yields and management strategies [6]-[8]; 
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 Temperature forecasting is a crucial aspect of meteorology and climate 

change studies, but challenges arise due to the complexity of time series 

data involving seasonal patterns and long-term trends. Traditional methods 

often fall short in handling this variability, necessitating more advanced 

solutions to enhance prediction accuracy. LSTM and GRU models have 

emerged as promising alternatives for modeling temperature data. This 

study is a literature review comparing the effectiveness of LSTM and GRU 

based on previous research in temperature forecasting. The goal of this 

review is to evaluate the performance of both models using various 

evaluation metrics such as MSE, RMSE, and MAE to identify gaps in 

previous research and suggest improvements for future studies. The 

method involves a comprehensive analysis of previous studies using LSTM 

and GRU for temperature forecasting. Assessment is based on RMSE 

values and other metrics to compare the accuracy and consistency of both 

models across different conditions and temperature datasets. The analysis 

results show that LSTM has an RMSE range of 0.37 to 2.28. While LSTM 

demonstrates good performance in handling long-term dependencies, GRU 

provides more stable and accurate performance with an RMSE range of 

0.03 to 2.00. This review underscores the importance of selecting the 

appropriate model based on data characteristics to improve the reliability 

of temperature forecasting. 
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energy, where accurate temperature predictions can assist in planning energy consumption and 

optimizing resource use [9]-[11]; and public safety, where accurate temperature information enables 

better preparation for extreme weather events like heatwaves or cold spells that can impact public 

health [12], [13]. With the increasing frequency and intensity of extreme weather events due to climate 

change, the need for more accurate temperature forecasting becomes even more critical. Inaccuracies 

in forecasting can lead to significant consequences, such as economic losses and safety risks. 

Temperature forecasting often faces significant challenges because temperature data exhibits 

highly complex and nonlinear patterns [14]-[17]. Variable seasonal patterns and unstable long-term 

trends make traditional forecasting models often ineffective at capturing these dynamics. Extreme 

weather events or global climate changes can cause unexpected fluctuations and patterns that are 

difficult to predict using standard methods. This results in conventional methods often failing to 

provide accurate and reliable predictions [18], thus necessitating more sophisticated approaches to 

handle the complexity and variability of temperature data more effectively. Therefore, research and 

development of more effective temperature forecasting methods are essential to enhance the ability to 

anticipate and respond to these challenges better, one of which is by applying deep learning methods. 

Recurrent Neural Networks (RNNs) are a deep learning method that has emerged as a powerful 

tool for sequence prediction problems due to their ability to process and learn from time series data 

[19]-[22]. Among the various types of RNNs, Long Short-Term Memory (LSTM) and Gated 

Recurrent Units (GRU) have gained particular attention [23]. These models are designed to overcome 

the limitations of standard RNNs, such as the vanishing gradient problem, which hinders learning in 

long sequences [24]-[27]. By incorporating mechanisms to retain information over long periods, 

LSTM and GRU models are well-suited for tasks involving temporal dependencies. LSTM, 

introduced by Hochreiter and Schmidhuber in 1997, uses memory cells and three types of gates (input, 

forget, and output) to regulate the flow of information [28]-[31]. This structure allows LSTM to 

maintain long-term dependencies and model complex temporal patterns effectively. Meanwhile, 

GRU, proposed by Cho et al. in 2014, offers a simpler version by combining the input and forget gates 

into a single update gate and merging the cell state with the hidden state [32]-[35]. This simplification 

reduces computational complexity and training time while retaining the capability to capture 

dependencies in sequential data. 

Many studies have applied LSTM and GRU in the context of temperature forecasting [36]-[47]. 

However, the choice between these two models often depends on factors such as dataset 

characteristics, model complexity, and computational efficiency. Some research suggests that LSTM 

has an advantage in capturing more complex long-term dependencies, while GRU excels in training 

speed and memory efficiency. Researchers have also found instances where the superiority of each 

method is uncertain. In some cases, LSTM provides better results, while in others, GRU performs 

better, even with the same model parameters and complexity. Hence, researchers aim to review this 

in a more specific context, namely temperature forecasting. 

Although there are numerous studies comparing LSTM and GRU, there is no comprehensive 

review specifically addressing the comparison of these models in the context of temperature 

forecasting. This review is crucial to highlight the strengths and weaknesses of each model and provide 

insights into the suitability of each model for various forecasting scenarios within this context. The 

objective of this literature review is to provide a detailed examination of the performance of LSTM 

and GRU models in temperature forecasting. The contribution of this research is to offer a comparative 

performance analysis of the LSTM and GRU methods by considering various studies and case 

examples in temperature forecasting. Additionally, this research aims to identify gaps in previous 

studies and suggest potential future research directions related to temperature forecasting. 

2. Basic Concept of DL Method 

2.1. LSTM 

LSTM is a variant of designed to overcome the main limitation of standard RNNs, which is their 

inability to handle long-term dependencies in sequential data [48]-[51]. The core strength of LSTM 
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lies in its ability to retain information for long periods without fading, which is crucial in applications 

such as text processing, speech recognition, signal processing, and time series data. In regular RNNs, 

information flows from one time step to the next, allowing the network to learn patterns in data 

sequences. However, when the gap between relevant information in the input and the time the network 

needs to learn it becomes too large, the gradients during the training process significantly diminish 

(the vanishing gradient problem). This makes it difficult for RNNs to remember information from 

distant time steps. LSTM solves this problem by introducing a gated mechanism that intelligently 

controls which information should be stored or forgotten. Each LSTM unit consists of several key 

components: a cell state, hidden state, and three main gates: the forget gate, input gate, and output gate 

[52]-[56]. The cell state acts as long-term memory, which can be modified by these gates. Essentially, 

LSTM functions by selecting which relevant information should be stored in the cell state and which 

should be discarded. 

The forget gate is used to determine which information from the previous cell state 𝐶𝑡−1 should 

be forgotten. This process combines information from the previous hidden state ℎ𝑡−1 and the current 

input 𝑥𝑡 , which is then passed through a sigmoid activation function 𝜎. The sigmoid function outputs 

a value between 0 and 1, meaning the forget gate can gradually choose between retaining all (value 1) 

or forgetting all (value 0) information from the cell state. The forget gate equation is represented in 

Equation (1). The input gate is responsible for deciding how much new information will be added to 

the cell state. Like the forget gate, the input gate uses a sigmoid function to regulate how much of the 

current input 𝑥𝑡  and the previous hidden state ℎ𝑡−1 will influence the cell state. The input gate is 

shown in Equation (2) [57]-[59]. On the other hand, the candidate cell state value is generated using 

the tanh activation function, which outputs values between -1 and 1 (Equation (3)). This candidate 

cell state represents the potential new changes that will be added to the cell state after being regulated 

by the input gate. In other words, it is the draft of the new cell state that will be updated, and this 

candidate can be largely relevant or completely ignored, depending on the output of the input gate. 

The cell state is updated based on two components. The first component is the product of the 

forget gate 𝑓𝑡  and the previous cell state 𝐶𝑡−1. This ensures that important information from the 

previous cell state remains. The second component is the product of the input gate 𝑖𝑡 and the candidate 

cell state 𝐶̌𝑡, which represents the new information to be added to the cell state (Equation (4)). Next, 

the output gate regulates which part of the cell state will be used as the output or hidden state ℎ𝑡. A 

combination of the current input 𝑥𝑡  and the previous hidden state ℎ𝑡−1 is passed through a sigmoid 

function to decide which part of the relevant information will be forwarded as output (Equation (5)). 

After the output gate determines which part of the cell state will be passed on, the hidden state ℎ𝑡 is 

calculated by multiplying the output gate 𝑜𝑡  by the updated cell state 𝐶𝑡, which is passed through the 

tanh activation function (Equation (6)). The tanh function is used to constrain the hidden state values 

between -1 and 1, allowing control over the flow of information. The LSTM architecture is illustrated 

in Fig. 1 [60]-[63]. 

2.2. GRU 

A GRU is a type of artificial neural network that falls under the category of RNNs [64], [65]. 

GRU was introduced to address some of the limitations of traditional RNNs, particularly the vanishing 

gradient problem that often occurs when processing long sequences of data. GRU uses gating 

mechanisms to help control the flow of information and memory within the network. This allows 

GRU to retain important information from previous data sequences while forgetting less relevant 

information. The key benefit of a GRU compared to an LSTM is its more streamlined design, which 

allows for quicker training times and reduced computational complexity because it involves fewer 

parameters [66]-[69]. GRU operates using two main gates: the update gate and the reset gate, which 

are represented in Equations (7) and (8), respectively [70]-[73]. 

 𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1509 
Vol. 4, No. 3, 2024, pp. 1506-1526 

  

 

Furizal (Long Short-Term Memory vs Gated Recurrent Unit: A Literature Review on the Performance of Deep 

Learning Methods in Temperature Time Series Forecasting) 

 

 𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (2) 

 𝐶̌𝑡 = 𝑡𝑎ℎ𝑛(𝑊𝐶[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) (3) 

 𝐶𝑡 = 𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̌𝑡 (4) 

 𝑜𝑡 = 𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

 ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

 𝑧𝑡 = 𝜎 (𝑊𝑧  [ℎ𝑡−1, 𝑥𝑡]) (7) 

 𝑟𝑡 = 𝜎 (𝑊𝑟  [ℎ𝑡−1, 𝑥𝑡]) (8) 

 

Fig. 1. LSTM architecture 

The update gate is responsible for determining how much information from the past should be 

passed on to the current state. The sigmoid function 𝜎 is used to ensure the value is between 0 and 1 

[74]. This value is multiplied by the weight 𝑊𝑧 and combined with the previous hidden state ℎ𝑡−1 and 

the current input 𝑥𝑡 . The update gate allows the network to decide how much new information needs 

to be integrated with the old information. On the other hand, the reset gate controls how much of the 

previous information should be forgotten. By using the sigmoid function 𝜎, the value of 𝑟𝑡 is also 

between 0 and 1. The weight 𝑊𝑟, the previous hidden state ℎ𝑡−1, and the current input 𝑥𝑡  are combined 

to determine the value of the reset gate. The reset gate allows the network to forget old information 

that is no longer relevant in the context of the current data sequence. Besides the update gate and the 

reset gate, there is also the candidate memory state ℎ̃𝑡 and the current hidden state ℎ𝑡, which are 

represented in Equations (9) and (10), respectively [70]-[73]. 

 ℎ̃𝑡 = 𝑡𝑎ℎ𝑛(𝑊 [𝑟𝑡  ×  ℎ𝑡−1, 𝑥𝑡]) (9) 

 ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡 (10) 
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The candidate memory is calculated by first multiplying the reset gate 𝑟𝑡 with the previous hidden 

state ℎ𝑡−1, then adding the current input 𝑥𝑡 , and finally applying the tanh activation function. The tanh 

function is used to produce values between -1 and 1, which serve as the new candidate for the current 

hidden state. This candidate memory reflects the new information proposed to be integrated into the 

hidden state. The hidden state is a combination of the previous hidden state ℎ𝑡−1 modulated by the 

update gate 𝑧𝑡 and the new candidate memory ℎ̃𝑡. The update gate 𝑧𝑡 determines the proportion of old 

and new memory to be combined. If 𝑧𝑡 approaches 1, the new memory ℎ̃𝑡 becomes more dominant, 

while if 𝑧𝑡 approaches 0, the previous hidden state ℎ𝑡−1 remains more dominant. This combination 

allows the GRU to adaptively remember or forget information based on the context of the received 

data. The GRU architecture is shown in Fig. 2 [75], [76]. 

 

Fig. 2. GRU architecture 

3. Datasets 

The datasets used in this temperature and meteorological analysis can come from various sources 

that provide information about weather conditions in different locations and periods. Data from 

international and national meteorological agencies provide information about temperature and other 

atmospheric parameters that are crucial for studies on climate change and global and regional weather 

patterns. Local meteorological stations, such as BMKG in Indonesia, supply daily temperature data 

that support climate trend analysis in specific areas [77]-[80]. Sources such as automated weather 

observation systems at specific locations, like airports, provide detailed data on local weather 

conditions and can be used and developed for weather forecasting for airline operations. Additionally, 

open data platforms like Kaggle offer historical datasets that can be used for scientific research [81]-

[84]. 

Self-collected temperature data can also be used as a dataset for weather forecasting. However, 

to ensure accurate forecasting, make sure the measuring instruments are calibrated to ensure data 

accuracy. If the data comes from external sources, ensure the dataset is from a reliable source and not 
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manipulated to maintain data integrity. This will also help the model to learn the true patterns in the 

data without any manipulation. A significant challenge with meteorological datasets is that they often 

have a considerable number of missing values. Therefore, it is essential to address this issue properly 

to ensure that the presence of missing values does not compromise data integrity, allowing the model 

to be trained effectively. 

4. Evaluation Metrics 

In evaluating the performance of forecasting models, three metrics are commonly used: Mean 

Squared Error (MSE) [85]-[88], Root Mean Squared Error (RMSE) [89]-[92], and Mean Absolute 

Error (MAE) [93]-[95]. MSE is a measure that calculates the average squared difference between 

observed values and expected values [96], [97]. In the context of prediction or forecasting, MSE is a 

measure that calculates the average of the squared differences between predicted values and actual 

values. MSE provides a larger penalty for larger errors because squaring the errors gives more weight 

to larger deviations (Equation (11)) [98], [99]. On the other hand, RMSE is the square root of MSE 

and provides an error measure in the same units as the original data (Equation (12)) [100]-[102]. In 

this literature review, RMSE will be used to compare the performance of LSTM and GRU based on 

previous research. The RMSE values from one study will be compared with those from other studies 

to identify the more powerful and reliable method for future temperature forecasting. In addition to 

MSE and RMSE, there is MAE, which calculates the average of the absolute differences between 

predicted values and actual values (Equation (13)). MAE provides a clear indication of the average 

prediction error without amplifying the impact of larger errors, as MSE and RMSE do. 

 
𝑀𝑆𝐸 =  

1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 (11) 
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𝑛
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5. Results and Discussion 

5.1. Previous Research on Forecasting with LSTM and GRU 

In the world of temperature prediction modeling, various methods and techniques have been 

developed to improve the accuracy and efficiency of weather forecasts. Among these techniques, 

LSTM and GRU have become two popular methods due to their ability to handle time series data and 

model complex seasonal patterns or trends. Many studies have attempted to apply LSTM and GRU 

methods to weather forecasting, particularly temperature forecasting, to improve prediction accuracy 

in the context of time series with dynamic and seasonal characteristics. As variants of RNN, LSTM 

and GRU have shown potential in addressing challenges associated with temporal data. Researchers 

have been applying these methods to temperature forecasting and exploring potential areas for future 

development over the years. 

In 2020, E. Supriyadi [41] used LSTM to forecast weather parameters, including temperature. 

The LSTM was trained using air temperature data from January 2019 and tested with data from 

February 2019. The results showed that LSTM could produce temperature predictions with a lower 

RMSE after updating the model, achieving 0.576. In this case, LSTM was effective in predicting 



1512 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1506-1526 

 

 

Furizal (Long Short-Term Memory vs Gated Recurrent Unit: A Literature Review on the Performance of Deep 

Learning Methods in Temperature Time Series Forecasting) 

 

sinusoidal temperature patterns ranging from 23.8 to 34.4 °C. However, there was an increase in 

RMSE over time, indicating that prediction accuracy declined for longer periods. 

Moreover, in the following year (2021), researchers such as H.-M. Choi et al. [36] highlighted 

the use of LSTM models to predict abnormally high water temperatures on the southern coast of 

Korea. The LSTM model proved very effective in capturing the long and complex temporal patterns 

of sea surface temperature (SST) data obtained from satellites over the past decade. In performance 

evaluation, the LSTM model achieved an R² value of 0.994, an RMSE of 0.412, and an MAPE of 

1.865 for one-day-ahead water temperature predictions. In the same year, T. Toharudin et al. [42] used 

LSTM to predict daily maximum and minimum temperatures in Bandung, achieving RMSE values of 

1.23 and 0.94, respectively. Subsequently, E. Haque et al. [47] attempted to compare temperature 

forecasting results using LSTM and GRU. The analysis showed that LSTM (RMSE 1.77) slightly 

outperformed GRU, especially in detecting long-term dependencies. However, robustness analysis 

indicated that GRU exhibited the best performance with the lowest average RMSE (2.0042°C) among 

the tested models, suggesting that GRU is the most robust DNN model for temperature data from 

different geographical locations. While the LSTM model did not perform as well as GRU, it still 

demonstrated competitive performance with an RMSE of 2.2768°C. 

In 2022, F. Rasyid and D. A. Adytia [37] focused on testing the capabilities of several algorithms, 

including LSTM, for short-term temperature forecasting in Jakarta, Indonesia. The LSTM algorithm 

demonstrated the best performance in predicting temperatures for 1, 3, and 7 days ahead compared to 

ConvLSTM and MLP. This was evidenced by lower RMSE and MAE values of 0.3099 and 0.2443, 

respectively, and a higher Correlation Coefficient (CC) for LSTM [37]. In another study, D. Jansen et 

al. (2022) [39] discussed the application of the LSTM algorithm in predicting meteorological data in 

East Kalimantan, specifically for temperature variables. This study used data from three 

meteorological stations: Kalimarau, Sultan Aji Sulaiman Sepinggan, and Aji Pangeran Tumenggung 

Pranoto, covering the period from January 2010 to June 2022. D. Jansen et al. showed that LSTM 

could produce accurate temperature predictions based on this study. Two LSTM models with different 

configurations were tested, and both provided results that were not significantly different. The first 

model had three LSTM layers with 64, 64, and 32 units, while the second model used 128, 64, and 32 

units. Evaluation using MAE, MSE, and RMSE metrics showed that the LSTM model could predict 

temperature well, with MAE, MSE, and RMSE values for temperature at Sultan Aji Sulaiman 

Sepinggan station being 0.67, 0.72, and 0.85 for the second model, which was slightly better than the 

first model with values of 0.68, 0.75, and 0.86 [39]. Y. E. N. Nugraha et al. [40] in their research 

discussed the use of the LSTM algorithm for temperature forecasting based on daily weather data 

collected from the Maritime Meteorological Station in Serang. LSTM was trained using weather data 

with a combination of various weather parameters and evaluated using RMSE metrics. The results 

showed that LSTM had the best performance in predicting temperature, with an RMSE value of 0.37. 

Meanwhile, for GRU applied in 2023, there was a study by H. Darmawan et al. [43]. In this 

research, GRU was used to generate weather predictions, including minimum temperature, maximum 

temperature, and average temperature based on data obtained from the Meteorology Station (Class I, 

Juanda) in Sidoarjo Regency, Indonesia (between January 2000 and June 2021). This study produced 

fairly good RMSE values for all types of temperatures (Tx, Tn, and Tavg). However, when compared, 

the RMSE value for Tavg was better than Tx and Tn, at 0.44. Tx and Tn each obtained RMSE values 

of 0.5 and 0.52 [43]. In the same year, H. Subair et al. [45] successfully predicted minimum 

temperature with an RMSE value of 0.694 and MAE of 0.523°C. These results were quite good, 

although not as good as those obtained by H. Darmawan et al. In another study, M. Diqi et al. [44] 

achieved much better results, reaching RMSE levels of 0.0326, MAE of 0.0277, MAPE of 0.0482, 

and R² of 0.9097. 

In 2024, A. Andre and T. Handhayani [38] applied the LSTM algorithm to predict temperatures 

in Ternate, North Maluku. Using historical data from 2010 to 2023, LSTM successfully produced 

predictions for minimum, maximum, and average temperatures with RMSE values of 0.69, 1.02, and 

0.67, respectively. In this case, the average temperature prediction was better compared to the 
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minimum and maximum temperature predictions. A summary of the previous research reviewed in 

this study is shown in Table 1. 

Table 1.  Previous research literature on temperature forecasting with LSTM and GRU 

Ref. Year Method 
Research  

Objects 
Data Source 

Accuracy 

MSE RMSE MAE 

H.-M. 
Choi, et. al 

[36] 

2021 LSTM 
Water 

Temp  

European Center for Medium-Range 
Weather Forecast (ECMWF) 

satellite-derived water temperature 

data from 2008 to 2017 

0.1697 0.4120  - 

F. Rasyid 
and D. A. 

Adytia [37] 

2022 LSTM Temp 
ERA-5 dataset (2018-2021) in 
Jakarta, Indonesia 

0.0960 0.3099 0.2443 

A. Andre 

and T. 
Handhayani 

[38] 

2024 LSTM Tn 
Data from BMKG, period January 

2010 – August 2023, Temperature 
prediction in Ternate, North Maluku  

0.4700 0.6900 0.5300 

2024 LSTM Tx 1.0400 1.0200 0.7600 

2024 LSTM Tavg 0.4500 0.6700 0.5200 

D. Jansen, 

et. al [39]  

2023 LSTM Temp 

Meteorological station Kalimarau 

(BMKG), period January 2010 – 
June 2022 

0.8300 0.9100 0.7200 

2023 LSTM Temp 

Meteorological station Sultan Aji 

Sulaiman Sepinggan (BMKG), 

period January 2010 – June 2022 

0.7200 0.8500 0.6700 

2023 LSTM Temp 

Meteorological station Aji Pangeran 

Tumenggung Pranoto (BMKG), 

period January 2010 – June 2022 

1.4100 1.1900 0.9200 

Y. E. N. 

Nugraha, 

et. al [40] 

2023 LSTM Temp 

Daily data from January 1, 2018, to 
October 28, 2022, provided by 

BMKG and measured by the 

Maritime Meteorological Station 

Serang  

0.1369 0.3700 - 

E. 

Supriyadi 

[41] 

2020 LSTM Temp 

Data from BMKG measured by the 

Maritime Meteorological Station 

Tanjung Priok 

0.3318 0.576 - 

T. 

Toharudin, 

et. al [42] 

2021 LSTM Tx Historical data of daily maximum 
and minimum air temperatures in 

Bandung from January 1st, 2014 to 

June 30th, 2019 

1.5129 1.2300 - 

2021 LSTM Tn 0.8836 0.9400 - 

H H. 

Darmawan, 

et. al [43] 

2023 GRU Tx BMKG Meteorology Station (Class I, 
Juanda) in Sidoarjo Regency, 

Indonesia (between January 2000 

and June 2021)  

0.2500 0.500 - 
2023 GRU Tn 0.2704 0.5200 - 

2023 GRU Tavg 0.1936 0.4400 - 

eM. Diqi, 
et. al [44] 

2023 GRU Temp 
Denpasar Weather Data (from 
Kaggle) 

0.0011 0.0326 0.0277 

H. Subair, 

et. al [45] 
2023 GRU Tn 

Agro Climate Research Centre, 

TNAU, Coimbatore, Tamil Nadu, 

India (data from January 1982 to 
September 2022) 

0.4816 0.6940 0.5230 

J. Anjani, 

et. al [46] 

2024 LSTM Temp Air temperature prediction on 

Runway 10 at Juanda Airport 

(Automatic Weather Observing 
System (AWOS)) 

0.0182 0.1349 0.0810 

2024 GRU Temp 0.0182 0.1349 0.0810 

E. Haque, 
et. al [47] 

2021 LSTM Temp Zhang S. et al., “Cautionary Tales,” 

hourly temperature (2013-2017), 

Beijing, and Historical Hourly 
Weather Data, hourly temperature 

(2012-2017), Toronto, Seattle, 

Dallas, Las Vegas. 

5.1838 2.2768 1.5680 

2021 GRU Temp 4.0168 2.0042 1.5128 

 

However, the RMSE difference between the minimum and average temperatures was minimal, 

at just 0.02 [38]. In the same year, J. Anjani et al. [46] contributed to research with their study titled 

“Prediction of Air Temperature on Runway 10 Juanda Airport Using Hybrid LSTM.” This study 
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explored a combination of LSTM and GRU architectures to predict air temperature at Juanda Airport, 

East Java, Indonesia. The research aimed to address challenges in temperature forecasting influenced 

by extreme climate changes using deep learning methods. Interestingly, LSTM and GRU achieved 

identical RMSE and MAE values of 0.1349 and 0.081. 

5.2. Comparative Analysis of Referenced Literature 

A comparative analysis of existing literature is an important step to understand the developments, 

methodologies, and results achieved in a field of study. This analysis provides an overview of the 

strengths and weaknesses of various approaches taken by previous researchers, and identifies areas 

that still require further research. This analysis will compare the referenced literature based on the 

RMSE evaluation metrics achieved in previous studies. The RMSE achieved by each reviewed 

previous study is shown in Fig. 3.  

 

Fig. 3. RMSE for each reference 

Based on the RMSE values presented in Fig. 3, it is evident that both GRU and LSTM methods 

have been applied in various studies for temperature and related variable predictions. From the 

available data, GRU shows outstanding results with the lowest RMSE of 0.033, as reported by M. 

Diqi et al. (Temp) in 2023. This result indicates that GRU can produce highly accurate predictions in 
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the context of temperature data, with minimal prediction error. LSTM also demonstrates excellent 

performance with competitive RMSE values, such as the study by J. Anjani et al. (Temp) in 2024, 

which reported an RMSE value of 0.135 for the LSTM model. Furthermore, similar results were also 

reported for GRU with an RMSE of 0.135 in the same study. This indicates that both models have 

very good predictive capabilities within the same data context. Other studies, such as the one 

conducted by H.-M. Choi et al. (Water Temp) in 2021, show that LSTM can be effectively used to 

predict water temperature with an RMSE value of 0.412. Although not as good as some GRU results, 

this value still demonstrates the strong performance of LSTM. 

Results from H. Darmawan et al. (Tx) in 2023 show GRU with an RMSE of 0.5 and for Tavg 

with an RMSE of 0.44, indicating GRU's consistency in predicting maximum and average 

temperatures. The study by Y. E. N. Nugraha et al. (Temp) in 2023 reported LSTM with an RMSE of 

0.37, consistent with other studies. F. Rasyid and D. A. Adytia (Temp) in 2022 reported an RMSE of 

0.31, further confirming LSTM's strong predictive capability in the context of temperature. Although 

these results have not reached the levels achieved by M. Diqi et al. (Temp) with GRU in 2023. 

However, to view the comparison from another perspective and ensure that the dataset and parameters 

are the same, the RMSE comparison for researchers using both GRU and LSTM is shown in Fig. 4. 

Based on Fig. 4, there are two studies that have used and compared both GRU and LSTM on the 

same dataset, namely the studies by J. Anjani et al. and E. Haque et al. In the study by J. Anjani et al., 

both the LSTM and GRU models produced identical RMSE values of 0.1349 (0.13). This indicates 

that both models have very good and almost equal predictive capabilities for the dataset used. On the 

other hand, the study by E. Haque et al. shows a difference in RMSE values between LSTM and GRU, 

with GRU achieving an RMSE of 2.0042 (2.00) while LSTM reached 2.2768 (2.28). This result 

suggests that GRU performed better compared to LSTM on that dataset. The disparity in RMSE values 

between these two studies may also indicate that model performance highly depends on the 

characteristics of the dataset used, with GRU potentially being superior in handling variations and 

uncertainties in temperature data in the study by E. Haque et al. However, in the study by J. Anjani et 

al., both LSTM and GRU provided almost equal performance, underscoring the flexibility and 

robustness of both models in temperature prediction applications. 

 

Fig. 4. Comparison of RMSE for researchers using both LSTM and GRU 
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Furthermore, when looking at the number of studies for each method by year, LSTM appears to 

be more popular compared to GRU. As shown in Fig. 5, there were no studies using GRU for 

temperature prediction in 2020 and 2022, while LSTM had one study each year. In 2021, 2023, and 

2024, LSTM had 4 studies, while GRU had 1, 5, and 1 studies respectively in those years. Although 

2023 shows a higher number of GRU studies compared to LSTM, when calculated overall, the use of 

LSTM still exceeds that of GRU. 

On the other hand, when averaged by year and method, GRU shows a consistently improving 

average RMSE. Recorded at an average of 2.00 in 2021, 0.44 in 2023, and a lower average of 0.13 in 

2024. Meanwhile, LSTM has a higher and almost inconsistent average each year. The best average 

RMSE for LSTM was recorded in 2022 at 0.31. However, 2021 recorded the highest error values for 

both methods, with LSTM at 1.21 and GRU at 2.00, as shown in Fig. 6. Additionally, when examining 

the minimum, average, and maximum values for each method across all referenced literature, GRU 

consistently demonstrates better performance. GRU has a minimum RMSE of 0.03, an average RMSE 

of 0.62, and a maximum RMSE of 2.00. These values are better compared to LSTM, which has a 

minimum RMSE of 0.13, an average RMSE of 0.83, and a maximum RMSE of 2.28. This is illustrated 

in Fig. 7. 

The analysis results indicate that both GRU and LSTM are effective methods for temperature 

prediction, with GRU generally showing a slight advantage in error values and consistency across 

several studies. However, on the other hand, LSTM seems to have been more favored and 

implemented by researchers in recent years for temperature forecasting case studies. 

 

Fig. 5. Number of data points per year and methods 

5.3. Advantages and Disadvantages of LSTM and GRU Methods 

LSTM has the ability to capture complex patterns in time series data, such as daily temperature 

fluctuations influenced by solar radiation [41]. Its main advantage is its capability to remember 

information over long time periods, which is crucial for predicting natural phenomena like fluctuating 

water temperatures [36]. LSTM effectively addresses the vanishing gradient problem often 

encountered in conventional recurrent RNNs. Additionally, LSTM can handle complex and noisy time 

series data, providing better prediction results compared to other traditional methods [38]. Another 

strength of LSTM is its ability to manage large volumes of data and high complexity, maintaining 

long-term information necessary for accurate predictions [39]. However, LSTM has some drawbacks, 
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including a decline in prediction accuracy over time and less suitability for highly fluctuating weather 

data like wind speed (multivariate) [41]. It also requires large, clean datasets (without missing values) 

and high computational time [36], [41], necessitating appropriate imputation techniques for missing 

values to ensure proper model training. Although LSTM is designed to handle long-term time series, 

it still shows a decrease in accuracy as the prediction period extends [36]. LSTM also has longer 

training times and demands more computational resources compared to GRU algorithms [47]. 

 

Fig. 6. Average RMSE per year and method 

 

Fig. 7. RMSE Min, Avg, and Max by method 

On the other hand, GRU has advantages in training speed and memory efficiency, making it faster 

and lighter than LSTM [42], [45]. GRU's main advantage is its ability to handle time series data with 

complex non-linear fluctuations [45]. It uses mechanisms like update gates and reset gates, allowing 
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the model to selectively update and forget information, thus capturing relevant patterns in the input 

data [44]. In temperature prediction cases, GRU also handles long-term dependencies effectively, 

useful in forecasting temperatures where seasonal patterns and long-term trends influence the data 

[44], [47]. However, GRU may not be as accurate as LSTM for very long sequence data and is less 

flexible in handling extremely long memory spans [45]. Challenges such as overfitting and 

computational complexity remain concerns, especially when the model is applied to data with high 

variability [44]. Additionally, GRU might require more careful hyperparameter tuning to achieve 

optimal performance [43]. Although GRU has the advantage in training speed, it may not provide 

prediction accuracy as high as LSTM, particularly for data with long-term time dependencies [47]. It 

is advisable to consider the dataset characteristics first to ensure that the chosen method and dataset 

work well together to produce accurate and reliable forecasts. 

5.4. Gaps in the Referenced Literature 

Previous research on temperature prediction using LSTM and GRU highlights several gaps that 

need to be addressed to improve forecasting performance. One major gap is the inability of LSTM to 

maintain long-term temperature prediction accuracy and handle highly fluctuating weather data. 

LSTM also requires large, clean datasets and has high computational time [41]. Additionally, there is 

a lack of exploration in utilizing additional features such as humidity, air pressure, and other 

meteorological data, which can provide more context in temperature prediction [36], [37], [40], [43], 

[46]. This approach can be referred to as Multivariate LSTM. While GRU performs well in handling 

time series data with complex non-linear fluctuations and has advantages in training speed and 

memory efficiency, it may not be as accurate as LSTM for very long sequence data and sometimes 

does not achieve the same level of prediction accuracy as LSTM [42], [45]. GRU also struggles in 

predicting variables with high fluctuations and volatility [44]. 

Several studies indicate the need for further exploration of hyperparameter optimization and 

different model architectures to improve forecasting performance, such as adjusting the number of 

units per layer, the number of layers, and other training parameters like learning rate and batch size. 

Some studies only compare models with relatively simple configurations [39]. Combining LSTM with 

other models like GRU or even non-neural models like ARIMA, and using ensemble techniques, 

might enhance prediction accuracy and robustness [38], [41], [42]. Other gaps include the lack of 

model evaluation in the context of more varied or extreme data, and limitations in handling very 

complex seasonal patterns without additional features or more in-depth data preprocessing [45], [47]. 

Future research can focus on developing models that better handle highly volatile variables and 

consider external factors in the model training process [43]. Further adjustments to hyperparameters 

and experiments with more complex model architectures like Transformers also have the potential to 

yield more accurate results [38], [39], [46]. 

5.5. Future Improvement Potential 

Future research can optimize LSTM and GRU for temperature prediction through various 

innovative approaches that enhance accuracy and efficiency. Integrating additional environmental 

variables such as humidity, wind speed, and precipitation can help models capture complex weather 

dynamics [38], [45]. Utilizing satellite and sensor data like GOCI, GOCI-II, and Himawari can 

improve short-term prediction accuracy by providing high-resolution data on diurnal changes [36], as 

the accuracy of the data source greatly affects deep learning model performance. 

Hybrid algorithm approaches are also promising. Combining LSTM with other deep learning 

models like CNN can help capture more complex spatiotemporal patterns, while using Attention 

Mechanisms can improve focus on important information in time series data [37], [39]. Exploring 

hybrid models that combine LSTM with Prophet, XGBoost, Random Forest, or other machine 

learning algorithms can leverage the strengths of each, resulting in more robust predictions [37], [43]. 

For GRU, combining this architecture with CNN also has the potential to enhance the ability to capture 

spatiotemporal patterns [44]. Using ensemble techniques that combine GRU with Transformer can 

increase model resilience to wide temperature variations [45]. Additionally, integrating LSTM and 
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GRU models within a single hybrid framework can leverage the strengths of both models to effectively 

handle data with long-term and short-term dependencies [47]. 

Other innovations include applying transfer learning to utilize models pre-trained on similar 

datasets, thereby improving prediction performance on smaller or less representative datasets [45]. 

Using more advanced pre-processing techniques, such as advanced normalization and data 

augmentation, can help models handle rare but significant extreme weather events [40], [44]. 

Developing ensemble algorithms that combine LSTM and GRU with ARIMA or other statistical 

methods can also effectively capture both short-term and long-term patterns [38], [40]. 

Implementing Internet of Things (IoT) technology for real-time data collection can dynamically 

update prediction models, enabling quicker responses to extreme weather changes [38], [103], [104]. 

By combining these approaches, temperature prediction models are expected to contribute more 

significantly to various sectors such as agriculture, transportation, and disaster management, with 

higher accuracy and faster responses to changing weather conditions [46], [105]. 

6. Conclusion 

In the field of temperature prediction modeling, both LSTM and GRU methods demonstrate 

significant effectiveness in handling time series data and modeling complex seasonal patterns or 

trends. LSTM, with RMSE values ranging from 0.37 to 2.28, is often the preferred choice due to its 

ability to capture long-term patterns and temperature dynamics, although its performance may decline 

over time or with certain datasets. On the other hand, GRU shows greater consistency and better 

performance in terms of RMSE values, with results ranging from 0.03 to 2.00. Comparative analysis 

reveals that while LSTM remains popular with good RMSE values, GRU often provides advantages 

in prediction accuracy and error consistency, with a lower and more stable average RMSE compared 

to LSTM. 
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