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1. Introduction 

In the years to come, wind power is going to be significantly influenced by the sheer amount of 

wind systems (WSs) linked to the grid; therefore, more WSs will be needed to remain linked to the 

grid in the event of a fault. In order to ensure the reliability of the power system (PS), WSs must be 

able to assist in controlling the grid voltage throughout failures, a function known as fault ride-

through capability (FRTC) [1]-[3]. Additionally, this is a necessary component of the WS grid code 

[4]-[6]. 

In many modern WS facilities, variable speed sort with power converters for control have been 

employed. Because of this, these kinds have the ability to control their own reactive power (Q) and 

run at unity power factor [7]-[11]. The DFIWG is currently the most popular one; Fig. 1 depicts a 

DFIWG's structure and control system. With this kind, the rotor's windings are supplied via bi-PWM 

voltage source converters (VSC), while the stator windings are linked straight to the grid. Put another 
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way, VSC links to the network and the rotor regulates a device. A portion of the machine's total 

power, roughly 30%, is intended to be transferred by the VSC [7], [12]-[14]. The speed range of the 

DFIWG is determined by the VSC’s size. From the stator to the network, the RSC regulates the P 

and Q of WSs. In addition to allowing the VSC to produce or absorb Q, the grid side converter (GSC) 

regulates the DCBC [15]-[17]. The power can be supplied by the DFIWG's rotor and stator. On the 

other hand, the DFIWG speed and wind speed determine which way active electricity flows through 

the rotor circuit [18]. Due to its direct connection to the grid via the stator winding, the DFIWG's 

primary drawback is its susceptibility to power grid disturbances [19]-[21]. 

 

Fig. 1. Studied system 

Active crowbar (ACR) is typically used to reduce the high currents during faults, improving the 

fault handling capability and shielding the DFIWG VSC from high rotor current. Where the VSCs 

are employed: in the rotor circuit. When an ACR is employed to briefly short-circuit the rotor in 

order to offer FRTC, the behavior of DFIWG was examined in [22], [23]. It was discovered that 

DFIWG permits the power grid's Q support even during fault situations, and this support is greater 

when the WS is not heavily loaded and when a voltage regulator is utilized in place of the DFIWG's 

continuous power factor management. In order to lessen unwanted fault effects, the ACR approach 

was implemented in [24], [25], helping to maintain grid voltage management during emergencies. 

Since the DFIWG stator is physically linked to the network, any disruption in the electrical 

network can also generate a stator disruption, which can have a significant impact on the rotor, RSC, 

and DCBC. In [26], the impact of DCBC breakdown was examined in order to monitor the DFIWG 

parameter values in a WS. Nevertheless, no research was done on how one generator's DCB 

breakdown affected the efficiency of the other units in the WS bus bar. When power support (also 

referred to as the FRTC) fails, DFIWG can remain connected to the grid if the RSC has an ACR 

installed [27], [28]. Once the fault has been fixed, the GSC can once more be controlled to preserve 

the DCB voltage (DCBV). Nonetheless, there's a good chance that the DCBV will vary either 

throughout or afterward the defect is fixed. Ref., [29] suggested an enhanced control approach with 
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immediate rotary power feedback to restrict the DCBV oscillations for a VSC in a DFIWG. Two 

control actions can be used to enable the ACR to accomplish the FRTC at the time the fault happens 

[27], [30]. Unplugging the RSC from the rotor without unplugging the WS from the network is the 

first step. The DFIWG will function as an IM with a high rotor resistance in this scenario [31]. 

Maintaining the RSC's connection to the rotor and the WS's joining the network is the second 

approach. After the issue is cleared, a regular operation can be resumed right away with the help of 

this control action [32]. A summary of some of the published works is listed in Table 1. 

Table 1.  Comparison of previously published works in this field 

Refs. 
Converters Role of study 

Notes 
RSC GSC MPPT PAC FRTC 

[33] 
     

The rotor circuit's transient current is decreased when 

feed-forward current regulation is applied when a 

malfunction happens quickly. 

[34] 
     

A dual vector and direct power controller are used to 

rapidly inject Q amid voltage dips and reduce the 

overcurrent in the rotor and stator. 

[35] 
     

A redesigned adaptive control system was introduced 

to the original standard vector control, and it proved 

useful in mitigating sensor malfunctions and ensuring 

acceptable response under faults. 

[36] 
     

The outcomes demonstrated that SMC functions well 

in the presence of unexpected voltage drop levels and 

nonlinear dynamics. 

[37] 
     

At the PCC, the dynamic adaptive multi-cell FCL 

topology was connected, greatly enhancing system 

performance and providing a flexible voltage dip 

correction methodology contingent on voltage levels. 

The effectiveness of the proposed technique was 

confirmed by comparative testing with the single-cell 

FCL. 

[38] 
     

After comparing the FLC, H infinity (H∞), and PI 

controllers' performances, it was found that H∞ 

performed the best where it provides improved 

performance and lower harmonics. 

[39] 
     

The three controllers with the lowest tracking error—

SM, PI, and advanced backstepping (AB)—were 

examined and their precision was evaluated. The fast 

reaction times and resilience were among the 

advantages of the ABC. 

 

This study examines how the DFIWG behaves when the ACR is activated and deactivated. It 

also illustrates how the RSC and GSC control systems can improve the DCB reaction to assist the 

network throughout system disruptions by taking into account the worst-case scenarios of short 

circuits that could happen near the stator terminals. Additionally, this study looks into the resistance 

value's impact. This paper's remaining sections are arranged as follows. The modeling and control of 

the DFIWG parts have been briefly covered in Section 2. Section 3 provides information on the 

coordinated control strategy and how ACR operates. The results collected and the validation of the 

suggested approach are presented in Section 4. This paper is finally concluded in Section 5. 

2. System Modelling 

DFIWG is what nature uses. Typically, an electric control technique is used to ensure the rotor 

circuit, allowing for variable speed processes. According to Fig. 2 (a) and Fig. 2 (b), DFIWGs can 

operate in one of two ways: When the generator is operating in a super synchronous mode in the (i) 

Mode Nr > Ns, s is negative and both stator/rotor windings transmit energy from the grid. In the 

second mode Nr, Ns, s is +tve generator is operating in sub-synchronous mode, stator winding is 

supplying power from the rotor winding [41]-[43]. 
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(a) 

 
(b) 

Fig. 2. DFIWG modes: (a) super-synchronous, (b) sub-synchronous 

This section explains in detail the DFIWG mathematical modeling. There is access to the 

machine data as reactance per unit. Fig. 2 depicts the DFIWG equivalent circuit. The machine's 

equilibrium equations are therefore expressed as follows. The conventional following is the 

DFIWG's electrical equation in the park frame, which transforms the voltage equations to a 

synchronously rotating frame of reference [44], [45]. 

 𝑣𝑞𝑠 = 𝑟𝑠𝑖𝑞𝑠 +
𝜔

𝜔𝑏
𝜓𝑑𝑠 +

𝑝

𝜔𝑏
𝜓𝑞𝑠 (1) 

 𝑣𝑑𝑠 = 𝑟𝑠𝑖𝑑𝑠 +
𝜔

𝜔𝑏
𝜓𝑞𝑠 +

𝑝

𝜔𝑏
𝜓𝑑𝑠 (2) 

 𝑣0𝑠 = 𝑟𝑠𝑖0𝑠 +
𝑝

𝜔𝑏
𝜓𝑞𝑠 (3) 

 𝑣′𝑞𝑟 = 𝑟′𝑟𝑖′0𝑟 + (
𝜔 − 𝜔𝑟

𝜔
)𝜓′

𝑞𝑟 +
𝑝

𝜔𝑏
𝜓𝑞𝑟 (4) 
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 𝑣′𝑑𝑟 = 𝑟′𝑟𝑖′𝑑𝑟 + (
𝜔 − 𝜔𝑟

𝜔
)𝜓′𝑞𝑟 +

𝑝

𝜔𝑏
𝜓𝑑𝑟 (5) 

 𝑣′0𝑟 = 𝑟′𝑟𝑖′0𝑟 +
𝑝

𝜔𝑏
𝜓′0𝑟 (6) 

Inductive reactance was calculated using the electrical basis angular velocity shown above. 

Following are the links between flux and volts per second. d-q frame depicts both the d-q-axis 

comparable circuit and control system schematic diagram shown in Fig. 3. 

 𝜓𝑞𝑠 = 𝑋𝐼𝑠𝑖𝑞𝑠 + 𝑋𝑀(𝑖𝑞𝑠 + 𝑖′𝑞𝑟) (7) 

 𝜓𝑑𝑠 = 𝑋𝐼𝑠𝑖𝑑𝑠 + 𝑋𝑀(𝑖𝑑𝑠 + 𝑖′𝑑𝑟) (8) 

 

 
(a) 

 
(b) 

Fig. 3. (a) d-q frame depicts both the d-q-axis comparable circuit and (b) control system schematic diagram 

 𝜓′0𝑠 = 𝑋′𝐼𝑠𝑖0𝑠 (9) 

 𝜓′𝑞𝑟 = 𝑋′𝐼𝑟′𝑖𝑞𝑟 + 𝑋𝑀(𝑖𝑞𝑠 + 𝑖′𝑞𝑟) (10) 

 𝜓′𝑑𝑟 = 𝑋′𝐼𝑠𝑖′𝑑𝑟 + 𝑋𝑀(𝑖𝑑𝑠 + 𝑖′𝑑𝑟) (11) 

 𝜓′0𝑟 = 𝑋′𝐼𝑠𝑖′0𝑟 (12) 

By multiplying 𝜔𝑏 by inductance in the equations above, the inductive reactance is found. The 

voltage Eqs (3) through (11) deal with current and flux connections (per second). Because of their 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1309 
Vol. 4, No. 3, 2024, pp. 1304-1318 

  

 

Hashim Alnami (Study of the Crowbar's Functioning in Doubly Fed Induction Wind Generators: Towards Achieving 

Fault Ride Through Capability) 

 

interdependence, currents and flux connections cannot exist independently or as state variables. The 

desired outcomes are attained to describe the voltage Eqs involving either current or flux linkage 

during the development of transfer functions and compute modeling of DFIWG. The voltage 

equation changes to look like the following if the current is treated as an independent variable and 

flux connections are replaced with current. 

 

[
 
 
 
 
 
𝑣𝑞𝑠

𝑣𝑑𝑠

𝑣0𝑠

𝑣′
𝑞𝑟

𝑣′
𝑑𝑟

𝑣′
0𝑟 ]

 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 𝑟𝑠 +

𝑝

𝜔𝑏
𝑋𝑠𝑠

𝜔

𝜔𝑏
𝑋𝑠𝑠 0

𝑝

𝜔𝑏
𝑋𝑚

𝜔

𝜔𝑏
𝑋𝑚 0

𝜔

𝜔𝑏
𝑋𝑠𝑠 𝑟𝑠 +

𝑝

𝜔𝑏
𝑋𝑠𝑠 0

𝜔

𝜔𝑏
𝑋𝑚

𝑝

𝜔𝑏
𝑋𝑚 0

0 0 𝑟𝑠 +
𝑝

𝜔𝑏
𝑋𝑖𝑠 0 0 0

𝑝

𝜔𝑏
𝑋𝑚 (

𝜔 − 𝜔𝑟

𝜔𝑏
)𝑋𝑚 0 𝑟′𝑟 +

𝑝

𝜔𝑏
𝑋′𝑟𝑟 (

𝜔 − 𝜔𝑟

𝜔𝑏
)𝑋′𝑟𝑟 0

−(
𝜔 − 𝜔𝑟

𝜔𝑏
)𝑋𝑚

𝑝

𝜔𝑏
𝑋𝑚 0 −(

𝜔 − 𝜔𝑟

𝜔𝑏
)𝑋′𝑟𝑟 𝑟′𝑟 +

𝑝

𝜔𝑏
𝑋′𝑟𝑟 0

0 0 0 0 0 𝑟𝑟]
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
 
𝑖𝑞𝑠

𝑖𝑑𝑠

𝑖0𝑠

𝑖′𝑞𝑟

𝑖′𝑑𝑟

𝑖′0𝑟]
 
 
 
 
 
 

 (13) 

Where 

 𝑋𝑠𝑠 = 𝑋𝐼𝑠 + 𝑋𝑀 (14) 

 𝑋′𝑟𝑟 = 𝑋′𝐼𝑟 + 𝑋𝑀 (15) 

If 𝜔 = 𝜔𝑏, the reference framework rotates at a speed of 120 p radians per second. An 

asynchronously synchronous reference frame is the term used to describe this frame. Following is an 

expression for the air gap flux connections 𝜓𝑞𝑚, 𝜓𝑑𝑚. 

 𝜓𝑞𝑚 = 𝐿𝑚(𝑖𝑞𝑠 + 𝑖′𝑞𝑟) (16) 

 𝜓𝑑𝑚 = 𝐿𝑚(𝑖𝑑𝑠 + 𝑖′𝑑𝑟) (17) 

𝑇𝑒 can be shown as follows. 

 
𝑇𝑒 =

3

2
(
𝑝

2
) (𝜓𝑞𝑚𝑖𝑑𝑟 − 𝜓𝑑𝑚𝑖𝑞𝑟) (18) 

Since the stator resistance-related power loss is negligible, the following equations can be used 

to estimate electromagnetic power: 

Active power is 

 (𝑃𝑠) = (𝑣𝑑𝑠𝑖𝑑𝑠 + 𝑣𝑑𝑠𝑖𝑑𝑠) (19) 

The reactive power that the grid either injects/absorbs is calculated using the following equation. 

 𝑄𝑠 = (𝑣𝑞𝑠𝑖𝑑𝑠 − 𝑣𝑑𝑠𝑖𝑞𝑠) (20) 

The electrical torque is illustrated as: 

 𝑇𝑠 = 𝜓𝑑𝑟𝑖𝑞𝑠 − 𝜓𝑞𝑟𝑖𝑑𝑠 (21) 

3. Structure and Modeling of ACR 

When an overvoltage\current happens on the DCB or in the rotor windings, ACRs are meant to 

activate. The RSC is ignored and rendered inoperable when the ACR is activated (by stopping the 

power switches' pulses). By using the closed ACR switch to short-circuit the three-phase rotor 

winding, the DFIWG becomes a regular IM. Once a predetermined amount of time has passed or the 
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rotor current and DCBV have been restored to levels within their typical working range, the ACR 

can be detached and the RSC returned [46]-[48]. A three-phase rectifier and switch are used in the 

rotor ACR to link a resistor to the rotor winding. The switch is activated to prevent large currents 

from passing through the RSC but still allow them to pass through the rotor ACR resistor when the 

rotor currents get too high. 

The rotor ACR action can often be represented as in (22). The parameters for each of the 

subsequent Eqs., are explained in detail [49], [50], [32]. The control strategy of the ACR system is 

depicted in Fig. 4. 

 𝑉𝐶 = 𝐹𝑆 𝑅𝐶  𝐼𝐶 (22) 

The rotor's transient time constant is determined to be: 

 
𝑇𝑟

𝑆𝐶 = (
𝐿𝑟

𝑆𝐶

𝑅𝑟 + 𝑅𝜏𝑐
) (23) 

The rotor current's highest level, which activates the ACR, is provided by: 

 
𝐼𝑟

𝑚𝑎𝑥 = (
𝑉𝑟

𝑚𝑎𝑥

√(𝑋𝑟
𝑠𝑐)2 + (𝑅𝜏𝑐)

2
) (24) 

The next estimate is used to determine the ACR resistance: 

 
𝑅𝜏𝑐 < (

√2 𝑋𝑟𝑠
𝑠𝑐  𝑉𝑟

𝑚𝑎𝑥

√3.2 (𝑉𝑠)
2 + 2( 𝑉𝑟

𝑚𝑎𝑥)2
) (25) 

The maximal allowed permissible rotor voltage, 𝑉𝑟
𝑚𝑎𝑥, is calculated utilizing (26), which is 

provided in pu, and is dependent linearly on the DCV: 

 
𝑉𝑟 = 𝑘 𝑚 𝑉𝐷𝐶  , 𝑎𝑛𝑑 𝑘 = (

1

√3
)
𝑉𝐷𝐶

𝑏

𝑉𝑟
𝑏

 (26) 

The following represents the relationship between the charging function and the DCB of ACR: 

 𝑉𝑟
𝑚𝑎𝑥 = 𝐼𝑅𝐷𝐶 − 𝑉𝐷𝐶 = 𝑂 (27) 

 

Fig. 4. Control of implemented crowbar system 

4. Results and Discussions 

Dynamic performance improvement of DFIWG under severe fault conditions is discussed in 

this work to show the role of the crowbar method. The system is tested in the case of the crowbar 

system and in its absence to show the benefit of adding it. The DFIWG parameters are studied such 

as (active and reactive power, generated current, angular speed, and DCBV) to show the impact of 

the proposed strategy on the machine performance. MATLAB/Simulink is used to simulate the 

examined DFIWG in order to confirm the efficacy of the suggested strategy. In this part, the FRTC 
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of the DFIWG is assessed via 100% voltage dip is assumed to occur as depicted in Fig. 5, and the 

DC link voltage transient responses under different crowbar resistances are analyzed. In addition, the 

simulated system parameters are listed in Table 2 [51]. The PI controller gains in this study are listed 

in the appendix. 

 

Fig. 5. System voltage 

Table 2.  Simulated DFIWG data 

DFIWG parameters Values 

Rated power 1.5 MW 

Rated stator voltage 575 V 

Rated frequency 60 Hz 

DC-Link voltage 1150 V 

Pole pairs 3 

Stator resistance 0.023 pu 

Rotor leakage inductance 0.16 pu 

Mutual inductance 2.9 pu 

Stator leakage inductance 0.18 pu 

Rotor resistance 0.016 pu 

Inertia constant 0.685 pu 

 

4.1. Case 1: Testing DFIWG in the Base Case Under 100% Voltage Dip 

Achieving FRTC for DFIWG become an urgent need in recent years. One of the important 

techniques is the ACR which is still used in industry. Investigating the system without a crowbar is 

presented in Fig. 6. The system is tested under 100% voltage dip from 3 to 3.2 seconds to show the 

DFIWG parameters response. This hard situation leads to an increase in the generated current as in 

part (a), angular speed as in part (d), reactive power as in part (c), and DC bus voltage as in part (e) 

which increased to reach more than 4.3 pu, about 1.274 pu, about 1.07 Mvar, and about 2421 V, 

respectively as seen in Fig. 6. In contrast, this situation decreased the injected power to about zero 

MW as depicted in Fig. 6 (b). All of the obtained results are summarized in Table 3. 

 
(a) Generated current 
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(b) Generated active power 

 
(c) Generated reactive power 

 
(d) Angular speed 

 
(e) DC link voltage 

Fig. 6. System response in the base case under 100% voltage dip 

4.2. Case 2: Testing DFIWG with Crowbar Under 100% Voltage dip 

Investigating the system with a crowbar is presented in Fig. 7. The system is tested under 100% 

voltage dip from 3 to 3.2 seconds to show the DFIWG parameters response. This hard situation leads 
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to an increase in the generated current as depicted in (a), angular speed as depicted in (d), reactive 

power as depicted in (c), and DC bus voltage as depicted in (e), which increased to reach more than 

4.1 pu, about 1.197 pu, about 1.09 Mvar, and about 1241 V, respectively as seen in Fig. 7. In contrast, 

this situation decreased the injected power to about zero MW as depicted in (b). The great effect of 

the crowbar appears on the DCBV which decreased by about 48.74%, and thus kept the converters 

from damage and helped in achieving FRTC. So, choosing the appropriate ACR value is important. 

All of the obtained results are summarized in Table 3. 

 
(a) Generated current 

 
(b) Generated active power 

 
(c) Generated reactive power 

 
(d) Angular speed 
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(e) DC link voltage 

Fig. 7. System response in the case of using a crowbar under 100% voltage dip 

Table 3.  Summary of obtained results 

Studied cases Parameters 

Without protection 

Overvoltage at 𝑉𝐷𝐶 2.11 pu 

P change ≈ (0 → 2.41) 

𝜔𝑟change ≈ (1.17 → 1.27) 

Q change ≈ ((-2.07 → 1.06) 

I change (-5.84 → 4.17) 

With crowbar 

Overvoltage at 𝑉𝐷𝐶 1.079 pu 

P change ≈ (-0.17 → 2.08) 

𝜔𝑟change ≈ (1.15 → 1.197) 

Q change ≈ (-2.1 → 1.06) 

I change (-5.8 → 4.1) 

 

The studied two cases showed the impact of the crowbar especially in the DCBV, which is the 

most important part of the machine, and without keeping it below the allowable limit (1.1 pu) will 

damage the machine or the protection system will force the DFIWG for tripping. So, choosing the 

appropriate resistance value of the crowbar deserves studying. 

4.3. Case 3: Impact of Different Changing Crowbar Resistance Values on DCBV 

The transient response of the DCBV at different resistance values under 100% voltage dip is 

investigated. Choosing the value of crowbar resistance is clearly important where it affects the 

machine's efficacy. It is chosen in the range of 10 times and 90 times larger rotor resistance to clarify 

the impact of this parameter. Fig. 8. shows the great effect of resistance value which means the value 

must be carefully chosen. The results show the value R=10Rr = 0.015 Ω decreases DCBV as seen in 

Fig. 8. The overvoltage at the 𝑉𝐷𝐶 reaches 2.11 pu, 1.572 pu, and 1.079 pu, respectively. These results 

showed that the DFIWG achieves FRTC only when R=10Rr. 

 

Fig. 8. The DCBV under different crowbar resistance values 
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5. Conclusions 

In this study, FRTC is provided by proposing a planned control method for ACR performed in 

the VSC of the DFIWG. A drop in grid voltage causes the DCB to overvoltage, the winding to 

overcurrent, and P to decrease. The findings indicate that the ACR resistance value influences 

DCBV. For DCBV, the lowest value yields the best outcome. Therefore, when selecting a value, it 

must be high to avoid short circuit current and low for Vdc. The acquired findings have shown that 

using the suggested ACR in conjunction with the coordinated control technique can result in a 

significant improvement. The outcomes show that under fault situations, the DFIWG can be kept 

under control without disconnecting from the grid; consequently, the system can recover faster than 

it would have recovered in the absence of protection. The ACR not only dissipates the RE during 

fault conditions, but it also sets a limit on the RSC current value, protecting the RSC and reducing 

the destructive DCBV. 
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Appendix 

Table 4.  The PI controller gains in this study 

 RSC PI gains GSC PI gains 

Voltage regulator 

(VR) 

Torque regulator 

(TR) 
VR VR TR VR 

Kp = 7.9712 Ki = 0.0319 Kp = 2.7839   Ki = 0.0937 
Kp = 

0.2981 

Ki = 

97.278 

Kp = 

3 

Ki = 

0.02 

Kp = 

8 

Ki = 

500 

Kp = 

1.2 

Ki = 

5 
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