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1. Introduction  

UAVs and autonomy have grown in popularity since the Industrial Revolution 4.0 (IR 4.0). A 

UAV, or Unmanned Aerial Vehicle, may fly for long periods without human involvement and be 

piloted remotely [1], [2]. Due to their wide range, low maintenance costs, easy deployment, mobility, 

and ability to hover, unmanned aerial vehicles (UAVs) can perform a variety of military and 

civil/commercial duties [3], [4]. The military uses UAVs for border monitoring, reconnaissance, and 

target elimination. UAVs are employed in search and rescue, package delivery, precision horticulture, 

and pharmaceutical distribution. Fig. 1 shows the four main types of drone; Multi-rotor, fixed-wing, 

single-rotor, and hybrid VTOL drones are included. 

Every major drone category has pro and cons. Vertical propulsion systems allow multi-rotor 

drones and helicopters to hover and fly smoothly. These airborne vehicles require forward force or 
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rotating motion from the drone due to their slow velocity and significant energy consumption [5]. 

Aerodynamic surfaces and propulsion systems allow fixed-wing and hybrid VTOLs to fly far. Unlike 

hybrid VTOL drones, fixed-wing drones need a runway to take off and land [5]. Fixed-wing aircraft 

require much of room for positioning and orientation. Fixed-wing aircraft need aerodynamic lift from 

air hitting their wings to stay aloft [6]. 

 

Fig. 1. Types of drones 

This chapter summarizes autonomous system collision avoidance research to date. Simplified 

and grouped collision avoidance strategies show important principles and approaches. Fig. 2 shows 

the classification system's two main categories: physical device and action. Collision avoidance 

system development begins with a hardware device, commonly a UAV for obstacle detection. This 

stage equips the UAV with sensors to detect impediments and perceive its environment. UAV designs 

fall into four performance categories: fixed-wing, hybrid VTOL, single-rotor, or multi-rotor drone 

sensors. Object detection and conflict resolution in sense and avoid, one of seven approaches, provide 

real-time collision avoidance. The idea is to predict a problem, notify an operator, and maybe fix it. 

Model predictive control improves constraint-based process control. Optimizing the route utilizing 

known obstacles and a potential field function to regulate attracted and repulsive forces to avoid 

collisions. Geometric guidance regulates velocity and location inflections. 

Collision avoidance systems range from simple notifications to complex mechanisms that 

autonomously prevent or lessen crashes [6]. Actuators can brake or steer to avoid obstacles. This 

research initially focused on advanced road systems for cars on the ground, which provided the 

framework for intelligent vehicles that function in the air and on the surface [7], [8]. Mujumdar and 

Padhi classify collision avoidance tasks as global or local path planning [9]. Global or conventional 

path planning generates ideal paths based on the complete environment and changes. Collision 

avoidance, also known as local path planning, moves to avoid collisions as the environment changes.  

Autonomous vehicles need obstacle detection, collision avoidance, path planning, localization, 

and control systems to navigate autonomously [10]. The scientific community is becoming interested 

in UAV swarms due of their cooperative nature. In military and commercial operations, search and 

rescue missions, traffic surveillance, border protection, and atmospheric research, swarms of 

unmanned aerial vehicles (UAVs) are sought after for their advantages [11]-[13]. Payload limits 

(sensors and batteries), power constraints, rain and dust-induced sight loss, and remote monitoring 

issues might impair UAV missions in dynamic environments. The robotics community is working to 

overcome these problems and advance technology so unmanned vehicles can operate safely in difficult 

situations [14], [15]. In dynamic scenarios with many unmanned aerial vehicles (UAVs) and shifting 

barriers, autonomous vehicles struggle to detect impediments and avoid collisions [6], [16]-[18]. 
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Fig. 2. Collision avoidance controller modules 

2. Device: UAV Design and Development for Collision Avoidance System 

A fundamental requirement for any collision avoidance system is the integration of appropriate 

hardware. Drones, in particular, need to perceive their surroundings to identify obstructions, which 

necessitates the use of obstacle-detecting sensors [19]. Remote sensing systems leverage imaging 

sensors of varying resolutions based on the application requirements. For observation, technologies 

such as LiDAR, visual, thermal, infrared, and solid-state or optomechanical sensors are employed 

[15], [20]. Sensors are characterized by their ability to detect distinct wavelengths of light and the 

electromagnetic radiation used by remote sensing systems [21]. UAV can be categorized into four 

primary types: fixed wing, hybrid VTOL, single rotor, and multi-rotor. Each type is specialized to 

optimize specific parameters such as velocity, maneuverability, stability, payload, capacity, security, 

size, or battery life. 

The following sections analyze and compare subcategories in further detail. The paper's 

succeeding sections follows this format. Section 2 provides a brief introduction and explanation of 

fixed-wing, fixed-wing hybrid VTOL, single-rotor, and multi-rotor drones. Section 3 offers an in-

depth analysis of collision avoidance controllers. Section 4 discusses various methods and solutions 

before concluding the paper. 

2.1. Fixed-Wing Drone 

Design and construction of fixed-wing and multi-rotor drones differ greatly. Like airplanes, they 

have a 'wing.' Since they cannot hover, fixed-wing drones do not need continual energy input to fly. 

They continue their pre-set trajectory or follow directions from a guide control (which may be a 

human-controlled remote unit) until their energy runs out. Fixed-wing aircraft's primary advantage is 

their ability to fly long distances on a single battery. Due to their superior engine efficiency, most 

commercial models can fly for an hour or more and covering an area of approximately 400 hectares. 

This makes them ideal for surveying oil pipelines [22], electricity towers [23], surveillance systems 

[24], monitoring systems [25] and agriculture applications [26]. 

Zhao et al. presented a curved route for fixed-wing UAV guidance [27]. To safely transport 

UAVs without collisions, a hybrid path following and collision avoidance system is presented. This 
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project uses virtual structures and kinematic models to construct a cooperative curved route following 

system. Multiple UAVs flying close together or changing formations enhance collision risk. However, 

fixed-wing aircraft must maintain a minimum airspeed and cannot stop. The vehicle's minimum speed 

and turning capabilities must be known to avoid accidents. Using a modified vector field histogram 

(VFH), evasive maneuvers only work close enough to prevent collisions. 

Lin et al. proposed a very efficient three-dimensional collision avoidance technique for fixed-

wing unmanned aerial systems (UAS) [28]. The method aids airplane operators in efficiently avoiding 

collisions with diverse impediments, so enabling them to achieve mission objectives. Fast Geometric 

Avoidance (FGA) utilizes kinematics, collision probabilities, and navigation requirements to calculate 

the optimal moment to initiate geometric obstacle avoidance. FGA significantly decreased calculation 

time by 90% in comparison to a previous method of generating waypoints, all while successfully 

navigating around obstacles. This technology enables the Unmanned Aerial System (UAS) to evade 

collisions and revert to its original trajectory. Various mission simulations demonstrate that this 

method is significantly more efficient in evading multiple obstacles. The efficacy of the algorithm is 

verified by Monte Carlo simulations and aircraft simulator flight missions. 

2.2. Fixed-Wing Hybrid VTOL Drone  

These hybrids combine fixed-wing (longer flying duration) and rotor-based (hovering) features. 

This idea was tested unsuccessfully in the 1960s. Advanced sensors like gyros and accelerometers 

have revived and redirected this paradigm. Automatic and manual gliding are used in hybrid VTOL 

aircraft. Vertical lift lifts the drone to the sky. Gyros and accelerometers stabilize the drone (autopilot). 

The drone can be controlled via remote or pre-programmed instructions. 

Vertical take-off and landing (VTOL) fixed-wing UAVs have various benefits over multi-rotor 

and fixed-wing UAVs. Superior aerodynamic efficiency, high cruising speed, and lengthy flight 

duration are advantages. Additionally, VTOL fixed-wing UAVs have reduced flatness and area 

landing site requirements. Thus, VTOL fixed-wing UAVs are widely used in remote sensing [29], 

power line inspection [30], geological mapping [31], and urban comprehensive patrol [32]. In addition 

to aerodynamic interference from the tilting propeller, VTOL fixed-wing UAVs must meet strict 

design strength requirements and fit their power systems to diverse flight situations. These factors 

prevent full and reliable safety assessments, slowing VTOL fixed-wing UAV development. 

2.3. Single-Rotor Drone 

Single-rotor drones resemble helicopters in design and structure. Unlike multi-rotor drones, 

single-rotor drones have one large rotor and a tail-mounted smaller rotor that controls direction. 

Unirotor drones are more efficient than multirotor ones. These aircraft can fly for long periods and 

use gasoline engines. An item's rotational speed is inversely related to its rotor count in aerodynamics. 

Quadcopters are more stable than octocopters because of this. This is where single-rotor drones excel. 

Single-rotor helicopter blades are long, resembling revolving wings rather than propellers. The 

helicopter's efficiency is enhanced by this design. 

 The author recommended monitoring systems using mono-copter or single-rotor UAVs in 

[33], [34]. These UAVs have a long flight time, can fly at different heights, and hover well. However, 

they are harder to fly. Agriculture uses single-rotor drones widely. The authors in [35] suggested CFD 

modeling of the single-rotor UAH N-3 downwash distribution. They did this by improving the 

software model and validating the measurement experiment with a new device. With a boundary 

velocity of 0.5 m/s, the downwash efficiently covers a 3.0 m circular region, double the rotor's radius. 

This velocity is used to calculate aerial spraying width. Simulations and experiments show that 

downwash velocity rises with radial distance. High-velocity downwash covers 25%–75% of the rotor 

radius. Additionally, downwash velocity has a local minimum and maximum range as longitudinal 

height increases. 

The author suggested employing a gas-powered autonomous robotic helicopter with a rotor 

diameter of 1.78 meters, together with flight control and software [33]. This aircraft would be utilized 
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for planning flights over tests ranging from 0.5 to 3 hectares in size. The helicopter would utilize three 

camera images to extract, align, and evaluate several experimental field plots. Within a span of 40 

hours, the system successfully executed more than 150 flights, each carrying a maximum weight of 

1.5 kg for a duration of 30 minutes or 1.1 kg for a duration of 60 minutes. Examples include of 

sorghum ground cover during the early season, sugarcane canopy temperature during the middle 

season, and wheat three-dimensional crop lodging factors during the late season. The combination of 

this hardware platform and enhanced software for automated orthomosaics, digital elevation models, 

and plot data extraction will enhance the efficiency of field-based phenotyping systems. 

2.4. Quad-Rotor Drone 

Quad-copters have four rotor blades. These devices usually use brushless DC motors. Two 

motors rotate clockwise, two counterclockwise. It helps locate quad-copter landings. Previously, 

lithium polymer batteries powered these devices. Four propellers distinguish quad-copters from 

helicopters. Additionally, helicopters have tail rotors for pitch control. It maintains flying stability. 

Quad-copters lack pitch control since their four rotors stabilize flight.  

Quad-copters are small flying devices with cameras to record flight. The quad-copter has two 

clockwise and two counterclockwise propellers. Thus, the quad-copter can fly and hover. Four rotors 

give the quad-copter more lifting power than a helicopter of equivalent size. Synchronized rotors lift 

the quad-copter's mass into the atmosphere. Additionally, it can carry more cargo than a comparable 

helicopter. Military and commercial drones benefit from this technology. The craft's four rotors can 

carry heavy loads without engineering changes. Thus, the vessel improves functionality while 

remaining economically viable. Quad-copters are agile. They smoothly hover and move in any 

direction. Quad-copters are used in surveillance systems [36], [37], monitoring systems [38], health 

diagnosis systems [39], agriculture applications [40], searching operations [41] and solar farm 

inspections [42]. 

The author proposed a quad-copter drone obstacle avoidance system with six ultrasonic sensors 

[43]. A prototype with four propellers and an Arduino microcontroller ran the avoidance algorithm. 

A fuzzy algorithm was used to determine the drone's reaction to its environment, while six ultrasonic 

sensors detected impediments. Sensor location is critical due to propeller-generated noise, as shown 

by an error rate exceeding 100% throughout the assessment. The sensors were then mounted 10 cm 

above the propeller for accurate measurements. The offline analysis shows a 1.81 percent mean error. 

When the impediment is far away, the sensor performs better due to the exponential drop in error with 

distance. Online mode increases sensor defects by 2.8%. The author published a proactive collision 

avoidance method for aerial robot navigation in unstructured urban and suburban areas. This method 

uses a 2D laser scan [44]. The open sector (OS) technique detects angle arcs in the scan where no 

range measurement is below a threshold and the arcs are large enough for the robot to travel safely. 

Modifying the target vector to include short-term memory of past actions creates a virtual target. A 

virtual target determines the best empty space, allowing the robot to quickly and smoothly cross 

complex barriers. Simulations and testing using an environmental monitoring quad-copter UAV 

verified the technique. The robot could travel outside areas without a structure at up to 3 m/s while 

maintaining a steady course. The open sector approach overcame possible barriers to field-based 

techniques.  

The authors Yu et al. employed binocular stereo vision and an ultrasonic system to steer a tiny 

unmanned aerial vehicle (UAV) in avoiding obstacles [45]. This combination of senses enables us to 

perceive the surroundings and articulate strategies for circumventing obstacles. The stereo vision 

system utilizes the Rapidly-exploring Random Tree (RRT) algorithm to detect obstacles in close 

proximity to the UAV and determine an alternative path. Ultrasonic sensors rectify malfunctions in 

obstacle detection systems. This article outlines a method to enhance the automation of the flight 

control system's leveling capabilities. The obstacle avoidance experiments demonstrate the 

effectiveness of the technique and the performance of the UAV platform. 
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2.5. Hexa-Rotor Drone 

Hexacopters are six-propeller remote-controlled aircraft. This organism usually has a camera and 

ski-like legs. These skis stabilize the gadget during landing. Six propellers give this vehicle more 

agility and lift than a quadcopter. The aircraft is more stable than a quadcopter and can fly higher. Due 

of its better lifting capacity. Hexa-copter is used for transportation applications [46], [47], agriculture 

applications [48], monitoring crops [49], water quality measurements [50], surveillance systems [51] 

and energy harvesting [52]. 

David et al. revealed that the author built a hexacopter to find and recover a drone [53]. This 

scenario's key challenges include developing a manipulation design for efficiently gripping the target, 

quickly identifying items, and conserving battery life in an unknown and continuously changing 

environment. The author introduced a coverage path planning system that uses an image-based object 

detection algorithm to help the hexa-copter find a lost target. After finding the target, our hexa-copter 

can grab it with a unique gripper and transport it to a predetermined location. Additionally, it can 

avoid stationary and movable impediments. The hexa-copter has vision, LiDAR, and three sonar 

sensors on its front, left, and right sides. In [55], The author recommended using stereoscopic vision 

to identify and perceive objects and other aircraft for a multi-copter collision avoidance system. A 

ZED stereo camera on a DJI S900 Hexacopter UAS creates depth maps. NVIDIA Jetson TX1 boards 

handle depth maps and collision avoidance algorithms. The board uses XBee radios to communicate 

with the Pixhawk autopilot and ground control station. The ZED SDK can use camera depth maps for 

obstacle avoidance. The technique divides depth maps into many segments to find the image segment 

with the furthest objects. Because of its clearness, this stretch was chosen. The hexa-copter can go 

independently to that place and avoid obstacles. 

The authors suggested the implementation of a LiDAR-based system to provide real-time 

collision avoidance for multirotor UAVs. This method enables unmanned aerial vehicles (UAVs) to 

autonomously examine structures without encountering restricted areas [54]. The collision avoidance 

technique underwent testing in a Gazebo simulation inside a diverse environment, involving a real 

UAV performing an external mission, a simulated obstacle, and LiDAR technology. This method 

allows for secure vehicle authentication without causing damage to delicate sensors such as LiDAR, 

and it may be tested in a lightweight unmanned aerial vehicle. Another author suggested a novel 

payload for unmanned aerial vehicles to do touch inspections on massive structures [55]. The 

hexacopter is equipped with LiDAR and ultrasonic sensors to detect objects. The payload was 

engineered to function autonomously from the flight controller. The device is strengthened by dual 

tubes, which enable seamless integration of the frame. The payload advances gradually towards the 

structure in order to prevent any potential rebounds. The image also displays a sturdy carbon fiber 

tube structure and a passive linear linkage featuring two rubber components. This connection serves 

to isolate the NDT sensor and structure from any vibrations produced by the unmanned aerial vehicle 

(UAV). 

2.6. Octo-Rotor Drone 

This aircraft has twice as many rotors as a hexacopter. It has eight working propellers. These are 

driven by eight motors. The aircraft climbs higher than quad- and hexa-copters. It combines quad- and 

hexa-copter agility, velocity, and elevation. They fly very steadily. Therefore, they can record steady, 

superb footage at any elevation. Professional filmmakers and adventurers prefer them. Eight rotors 

enable steady, elevated filming of wildlife, landscapes, and events. Octo-copter are used in inspection 

systems [56], agriculture applications [57], [58], monitoring systems [59], [60] and transportation 

applicaitons [61]. 

Chung and Son reported that the author recommended a multibody octo-rotor UAV to improve 

controllability and flight performance [62]. A typical multirotor is underactuated since it can only 

independently govern four rigid body dynamics states, although having more than four rotors. Pitch 

and roll are coordinated using x-y coordinates. Thus, the camera gimbal needs more actuators to 

position the camera. Multirotor UAVs have lower aerodynamic capabilities, such as flying speed, than 
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fixed-wing UAVs. Aerodynamic drag increases because the multirotor's attitude must be adjusted to 

its speed. The research describes a multibody multirotor (MBMR) UAV that can decouple multirotor 

pitch angle control from main fuselage position control. This separation improves UAV control and 

aerodynamics. The multirotor can be partitioned into three frames utilizing rotating joints for pitch 

angle independence. 

The author also suggested using linear model predictive control (LMPC) to develop a collision 

avoidance controller for MIMO plants to solve controller design issues [63].  Based on the collision 

cone concept, the design can improve flight controller efficiency by reducing PID loop computing 

load. The octo-copter's range detecting sensor locates obstructions accurately. This method is ideal 

for dealing with practical concerns including collision avoidance controller constraints and external 

disturbances. The simulation results show that an LMPC-based collision avoidance controller can 

mitigate progressive and fast disturbances. When applied to MIMO systems, LMPC appears to 

outperform PID control. 

The author proposed a spraying agricultural drone. A 12-volt pump, 6-liter tank, four atomizing 

nozzles, an octo-copter frame, a landing frame, and eight Brushless Direct Current (BLDC) motors 

with propellers make up this mechanism. These motors can provide 38.2 KG of torque at 10 meters 

[57]. A First-Person View (FPV) camera and transmitter can be attached to the drone to monitor 

spraying and plant pests. Pesticide application takes less time, manpower, and money with this drone. 

Modifying the pump flow discharge allows this drone to distribute disinfectant liquids across 

structures, bodies of water, and densely populated areas. 

A self-governing aerial aircraft that can carry a human passenger was also proposed [64]. First, 

a scaled-down multirotor aircraft was tested for design and flight characteristics. After the little drone 

is ready, we will build, assemble, and test a larger multirotor aircraft that can carry a similar-weight 

passenger. The smaller prototype's final design will be used. Creating an individual airborne 

transportation system will spark public debate about self-governing “air taxi” systems and spark 

STEM interest, including aeronautics. 

As a summary, based on the research each type of drone has pros and cons. The tri-copter and 

quad-copter are cheap and light, so they're good for hobbyists and small tools. However, they can't 

carry heavy things. It's stable and can fly, even though one of the motors broke. This plane can go 

higher and carry more goods than the quadcopter. The octocopter is the strongest of the three drones 

because it can fly high and carry big things. But this drone costs the most and needs to be charged 

more often. The hexacopter is a good drone to think about because it has many uses and can be trusted 

to do important jobs. Compared to octocopters, they are cheap to build and keep up. 

3. Perception: Obstacle Detection – Passive Sensors 

Perception is the initial stage of every collision avoidance system. Drones need to have the ability 

to see their environment in order to accurately detect and recognize obstacles. In order to accomplish 

this, it requires one or more perception sensors [65]. Remote sensing systems necessitate the use of 

imaging sensors with diverse resolutions. The utilization of sensors varies based on the specific 

application. The observation sensors consist of LiDAR, visible cameras, thermal or infrared cameras, 

and solid-state or optomechanical devices [15], [66]. Sensors possess the capability to identify specific 

wavelengths of light and the electromagnetic radiation employed by remote sensing systems [21]. 

Multiple sensors are employed to identify obstacles, which can be categorized into two distinct groups: 

1) Passive sensors refer to sensors that detect and measure physical properties without actively 

emitting any signals. 2) Active sensors, on the other hand, are sensors that emit signals and then 

measure the response to those signals in order to detect and measure physical properties. Passive 

sensors perceive and capture the energy released by objects or scenery. Passive sensors commonly 

used in sensing applications including optical, visual, thermal, and infrared (IR) cameras, as well as 

spectrometric instruments [67], [68]. Various camera types operate across a range of wavelengths 

including visible light, infrared (short-wave, near-wave, mid-wave, and long-wave), and ultraviolet. 
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The authors suggest utilizing acoustic waves to instantaneously track and locate automobiles [69]. 

The author utilizes noisy data to create enduring spatial features and sequential state estimation in 

order to generate the result. The author substantiates his method by employing empirical sound data 

from the real world. Monocular or stereo optical or visual sensors utilize the spectrum of visible light 

[70], [71]. Thermal or infrared cameras function within a wavelength range of 700nm to 14m, which 

is longer than the wavelength range of visible light. Visual cameras utilize the spectrum of visible 

light to capture and generate images, whereas thermal cameras employ infrared radiation. Unlike 

traditional cameras, infrared cameras excel in low light conditions [67]. Image processing is crucial 

for extracting valuable data from all camera images. Furthermore, the extraction of regions of interest 

necessitates additional processing resources, in addition to a technique for calculating obstacle range 

and other factors [72]. Visual cameras are influenced by various environmental factors such as lighting 

conditions, fog, and rain, as well as the camera's limited field of vision [73], [74]. 

3.1. Camera 

Visual sensors like cameras collect data by taking pictures of things and surroundings. 

Monocular, stereo, and event-based visual cameras are prevalent [75]-[77]. Cameras' compactness, 

lightweight construction, low energy usage, adaptability, and easy installation are perks. However, 

these sensors are weather-dependent, have low image clarity, and are sensitive to illumination and 

backdrop color contrast. Since any of these variables degrade image quality, they significantly affect 

the output. 

The other authors proposed a monocular camera-based ground robot obstacle recognition 

approach [78]. The lower picture is used for basic obstacle identification with enhanced Inverse 

Perspective Mapping (IPM) and a vertical plane model. This method works for robots moving at 1 

m/s. The MRF framework segments barriers to calculate the robot's proximity to the nearest obstacle. 

A stereo camera approach was also suggested [79]. Stereo cameras use intrinsic and extrinsic features 

to accurately measure absolute depth, unlike monocular cameras. Stereo imaging requires more 

computational power. To reduce computing costs and handle complex systems with six degrees of 

freedom (6DoF), such as drones, the authors split obtained images into nine sections. To smooth the 

controller's response, a fuzzy controller is used. Falanga et al. propose an event camera-based obstacle 

avoidance algorithm for high-speed drones [80]. Event cameras employ less processing power than 

obstacle detection cameras, making them better for obstacle avoidance. An event camera only records 

environmental changes, avoiding the need to collect extraneous data.  

3.2. Infrared 

IR cameras are used as infrared sensors in low-light conditions. They can be used with visible 

cameras at night to overcome their limitations. Due to thermal camera output blurriness and distortion 

compared to RGB cameras, its data can be evaluated by extracting false control points and analyzing 

them to determine automatic image inclination or orientation [81]. Roomba, for instance, uses infrared 

and bump sensors to avoid obstructions. The bump sensor only detects barriers or items that touch the 

robot, which may cause damage. 

4. Perception: Obstacle Detection – Active Sensors 

Active sensors radiate and detect reflected radiation. An independent transmitter (source) and 

receiver/detector make up active sensors. A transmitter sends light, electricity, or sound that reflects 

off an object and is sensed by a sensor receiver. Most of these sensors operate in the microwave range, 

allowing them to infiltrate the environment under most situations. For detection, LiDARs [82], radars 

[83], sonar or ultrasonic sensors [84], [85], and active infrared sensors [86]. These sensors have fast 

response time, low processing power consumption, wide coverage, low weather and illumination 

susceptibility, and exact obstacle property measurements such distance and angle. They use millimeter 

wave (MMW) radar [87]. From radar signal reflections, they calculate the distance between an item 

and a vehicle. The things are detected and monitored at this distance. Performance is also evaluated 
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in various weather and distance circumstances. Although radar-based solutions may sound appealing, 

they are too expensive or large for battery-powered UAVs [88], [89]. 

4.1. Radar 

Radar sensors emit radio signals that are reflected back to the radar when they encounter an item. 

Measure the signal's reflection time to measure the item's distance from the radar. Airborne radar 

systems have been used for decades due to their weather tolerance. Airborne radar systems are 

expensive but used for data collection due to their precision. Radars use pulsed or continuous waves. 

Continuous-wave radar emits frequency-modulated linear signals. In contrast, pulsed-wave radar 

emits intense, brief signals, creating a blind zone [90]. In addition, radars measure object motion and 

velocity. When an object approaches the radar, the signal bounces back faster. The object's speed is 

calculated from this frequency variation [91]. Although weather-insensitive, microwave radar sensors 

operate at a lower frequency spectrum, limiting their angular resolution. Millimeter wave radar sensors 

are smaller and offer higher angular resolution, but they are very weather-sensitive [92]. The antenna's 

aperture limits angular resolution, however increasing frequency can help. 

Due to their weather resistance, low-light and overcast capability, and wide coverage range, 

radars are ideal for outdoor applications. Radars can only identify obstacles due to their low output 

resolution. Replicating an object's proportions is impossible [93]. Other authors used a small radar 

system to determine distance instantly in varied weather situations [91]. A small radar sensor and 

obstacle collision avoidance system processor are included. OCAS calculates avoidance criteria using 

radar data including obstacle velocity, azimuth angles, and range and instructs the flight controller on 

how to avoid collisions. The system's performance showed that obstruction detection within the 

detection range approaches 90%. The collision avoidance technology was tested in four scenarios. 

The results showed that safety margins increase the likelihood of avoiding a collision by over 85%, 

even if radar data is inaccurate. 

The authors thoroughly examine the benefits of using multichannel radar sensors with UAVs for 

obstacle recognition. They also study obstacle detection and computation, including velocity and 

angle. The number is 92. Empirical data show that forward-looking radars' simultaneous multitarget 

range capabilities may identify several targets throughout a 60-degree azimuth range. In their 

independent collision avoidance solution, Nijsure et al. used Ultra-Wideband (UWB) collocated 

MIMO radar [94]. Radar cognition can adjust the UWB-MIMO radar emission waveform to improve 

UAV detection and guidance. It also estimates collision points. Because radar systems are reliable in 

all weather and can precisely estimate distances and close speeds, the other author studies them for 

sense and avoid on UAVs [95]. This article covers S (3 GHz), Ka (35 GHz), and X (10 GHz) radar 

frequencies. It also weighs the pros and cons of each frequency. X-band was the best radar band for 

sense and avoid, according to the authors. This is because it can be easily integrated into the UAV 

frame without increasing its size and provides a cost-effective and accurate angular measurement 

solution. Moses et al. tested radar sensors and developed a compact, lightweight X-band radar sensor 

for UAVs. This was because radar sensors can accurately detect UAV targets and obstacles [96]. UAV 

propulsion causes Doppler shift, which is used to properly detect targets and optimize maneuvers to 

avoid collisions. Scientists say their vehicle detection and identification method can be scaled up for 

larger vehicles. 

4.2. LiDAR 

LiDAR sensors work like radar. In LiDAR sensors, an emitter emits laser pulses onto surfaces 

and a receiver detects their reflection. LiDAR sensors measure surface distance by monitoring pulse 

bounce time. Data capture with LiDAR is efficient and accurate. LiDAR systems have become 

cheaper during the past 20 years. LiDAR sensors have also shrunk in size and weight, making them 

suitable for small and micro UAVs [93], [97]. Cost-effective 1D and 2D LiDAR sensors outperform 

radar systems. Nanashibi and Bargeton used different laser scanners on a vehicle to demonstrate their 

new system's accuracy [82]. In 3D environments, 2-axis LiDARs are employed for mapping and 

obstacle detection [98]. The constant mobility and range of LiDARs cause motion warping in their 
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data, making their use difficult. Adding sensors to LiDAR may solve this problem, according to Zhang 

and Singh [99]. Only 3D LiDARs can reliably locate and orient things. Tong et al. align intensity 

photographs from 3D LiDAR scans with visual features to correct motion-induced distortion [100]. 

LiDAR can detect tiny objects and create a monochromatic 3D image using a short wavelength. One 

shortcoming of LiDAR is its inability to detect optically clear glass. Adding an ultrasonic sensor to 

LiDAR may help overcome this constraint. 

4.3. Sonar 

Ultrasonic sensors measure distance by emitting sound waves and detecting their reflection [101], 

[102]. The ultrasonic sound waves span from 25 to 50 kHz, which exceeds human hearing [103]. The 

distance computation mechanism is similar to radars and LiDARs. Emitting a wave and measuring 

the time it takes the reflected wave to reach the object. Ultrasonic sensors are widely available and 

cheaper than most range sensors. Ultrasonic sensors are unaffected by transparency, unlike LiDARs. 

LiDARs struggle to distinguish transparent glass, but ultrasonic sensors are unaffected by color. 

However, if the item deflects the sound wave away from the receiver or absorbs sound, the sonic 

sensor results will be unreliable. 

As a summary, an active sensor has a transmitter, a source of energy to emit a wave with a given 

wavelength range, and a receiver to read incoming waves reflected off environmental objects. A 

passive sensor only detects light or energy emitted or reflected by objects, requiring an external energy 

source. Cameras are passive sensors that need an external light source, while LiDAR is active and 

shoots laser pulses at the scene and reads the backscatter for processing. Camera data is limited by the 

quality and intensity of an external light source, but LiDAR data is not. Active sensors use more power 

than passive sensors that merely read data since they transmit and receive. However, active sensors 

gather directed data—reflected versions of their own signals—simplifying data processing. Passive 

sensors like visual cameras require a lot of computational power to filter and interpret raw image data 

to find significant points of interest. A camera-based collision avoidance solution has a high 

processing cost, making it challenging to deploy in situations demanding fast object recognition and 

decision making. However, given adequate illumination, it can provide more detailed environmental 

information than LiDAR, sonar, or radar. Range systems are better for collision avoidance than 

camera-based techniques due to their faster response times and greater tolerance for poor illumination 

and weather. 

5. Action: Collision Avoidance Controller 

There are three main types of collision avoidance algorithms: 1) the “sense and avoid” approach 

makes collision avoidance easier to understand so that it costs less to run and responds faster. Each 

drone has to find and avoid obstacles and change its path when it needs to, regardless of what the other 

drones are planning. 2) Conflict resolution is the ability to see a problem coming, let a person know 

about it, and help them solve it. 3) Model predictive control predicts how the dependent variable will 

change in the system being modeled. The method figures out the best control inputs for a UAV model 

while keeping limits in mind to make a cost function as small as possible. The next step is to run the 

sequence's first control input. 4) Drones that are driven by ANN need computer vision to work. Drones 

can use this technology to find moving items and take pictures of them, as well as to analyze and store 

data from the ground. 5) A potential field function is set by the electric forces between charged things. 

Each unmanned aerial vehicle (UAV) node in a group of drones is like a charged particle, and the path 

is set by the forces that pull or push against obstacles. 6) Geometric guidance methods use the speeds 

and locations of the UAV and the object to figure out the distance between the agent and the obstacle. 

7) Methods based on optimization find the best or almost best way for each drone to move and plan 

its path in relation to other drones and objects. These algorithms use the positions and sizes of 

stationary items to find the best way within a certain amount of time. 
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5.1. Sense and Avoid (SAA) 

Sense-and-avoid approaches aim to reduce computational resources for fast response times. 

Simplifying collision avoidance to obstacle detection and avoidance achieves this. Thus, each drone 

in a swarm may manage its own route without knowing others'. Each drone's position in respect to the 

others is established, and the collision avoidance algorithm calculates specific routes for the drones to 

avoid collisions inside the group and with external barriers. The sense and avoid collision avoidance 

system is ideal for dynamic environments due to its fast response. This technique equips an agent/robot 

with LiDAR, sonar, and radar. Zheng et al. proposed scanning a point cloud with the RPLIDAR A2 

to estimate UAV position [104]. RPLIDAR A2 has an 8-meter detection range, weighs 190 grams, 

scans at 10 Hz, has a 1° resolution angle, and produces a 360-point sequence after a single scan. 

Polynomial velocity estimation is used to estimate the LiDAR's position as it scans each point and 

correct the distorted point cloud. Cluster Based on Relative Distance and Density clusters point clouds 

with different densities. The experimental results show that this study's technique can properly cluster 

point clouds with non-uniform density and correct their displacement. It also shows that a little, 

inexpensive obstacle detection device can benefit the UAV. 

A laser-based avoidance system for driverless vehicles was introduced [105]. The system used a 

two-wheeled robot. This system can swiftly receive barrier distance information, avoid obstacles, and 

decide a new direction and travel by processing data at the computation platform level. Faria et al. use 

a two-dimensional laser for three-dimensional exploration to save costs and payload weight [106]. 

Since the unmanned aerial vehicle (UAV)'s main goal is to collect surface data, the exploration 

procedure must address the non-beneficial viewpoint (NBV) problem to strategically position the 

sensor. The author proposes deterministic, autonomous 3D exploration. System uses 2D laser sensor 

and modular design. The frontier algorithm is used locally and globally. This method includes a 

surface neighborhood in the frontier surface idea. The Lazy Theta* algorithm builds safe paths during 

the expedition. The well-known A* method is modified to be angle-independent. The UAV can survey 

93% of the search area in under 30 minutes. It does this by autonomously constructing a route that 

adapts to inner regions, irregular structures, and suspended objects. According to Moffatt et al., 

Velodyne VLP-16 LiDAR was used to construct a multi-copter UAV obstacle detection and 

avoidance system [107]. The absence of obstacle identification and avoidance skills and situational 

awareness has prevented UAVs from being widely used. This sensor was designed to identify and 

avoid obstructions. The UAV can map its surroundings. Deciphered LiDAR data was used to build a 

UAV path without obstacles using distance and azimuth statistics. LiDAR was the main visual sensor 

for the obstacle avoidance algorithm [108]. A mathematical model is constructed using System 

Identification (SI) for this system design, and field-test data is used to verify the USV model's 

accuracy. Next, we cover LOS-based navigation. The USV platform's modular GNC architecture 

integrates obstacle detection, path-following, and control. Two simulated and field-tested control 

scenarios are shown in the experimental results. These tests prove the GNC architecture's capabilities 

and performance. GNC algorithm accuracy is tested by exactly building the safety boundary box and 

reaching the last USV path waypoint. The line-of-sight (LOS) navigation system controls the 

unmanned surface vehicle (USV)'s velocity and heading. 

Aakash and Manoj Kumar calculated the best route between LIDAR obstacle-detected waypoints 

[109]. The RPLIDAR (LiDAR) sensor created UAV paths in this investigation. The approach entails 

creating a 3D map with a gazebo and visualizing it with ROS rviz. This is done using a single LIDAR-

reading plan. The unmanned aerial vehicle (UAV) went from the starting point to the destination area 

without any obstacles using the data. This technique works, as shown by experiments. Chiella et al. 

developed a GNSS-LIDAR navigation system for aerial robots in sparsely populated forests. This 

system is suitable places with ample flight space and intermittent GNSS reception [110]. Due to the 

difficulty of autonomous vehicle navigation in forests. Tree canopies may degrade or eliminate GNSS 

data in these situations. A complete ecological map is impossible due to the many obstacles. To 

combine LiDAR-based odometry with GNSS and AHRS data, RAUKF was used with the Unscented 

Kalman Filter (UKF). The motion control approach uses a vector field and optimal planner to avoid 
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obstacles. The user may more easily strategize the vehicle's main goal, which is to precisely define a 

trajectory in three-dimensional space to navigate obstacles. 

5.2. Conflict Resolution 

The CD&R technology anticipates conflicts, alerts human operators, and sometimes resolves 

them. Multiple levels of subdivision exist within these three major processes. Any conflict—aircraft 

or otherwise—relies on decision-making. AUVs with fixed wings can avoid collisions with stationary 

and moving obstacles using the author's novel collision avoidance algorithm [111]. A safety-oriented 

control algorithm helps UAVs move from dangerous to safe states under certain conditions. For fewer 

UAV transitions between “safe mode” and “danger mode,” a conflict buffer is used to resolve conflicts 

and ensure a smooth transition. The appropriate criteria can be utilized to avoid collisions with static 

and dynamic barriers and internal vehicle collisions. The UAV outperforms static and dynamic 

barriers in obstacle avoidance. The three UAVs choose the best trajectory based on their positions and 

velocities. The author introduced Learning-to-Fly (L2F), a decentralized aerial collision avoidance 

technology in many UAS. UAS can autonomously plan and execute missions with Signal Temporal 

Logic-articulated spatial, temporal, and reactive objectives [112]. Mixed Integer Linear Programs 

(MILPs) are used to prevent UAS collisions while meeting mission goals. However, addressing this 

issue online is challenging. Instead, we designed L2F, a collision avoidance system with two stages: 

a learning-based decision-making scheme and a distributed, linear programming-based UAS control 

method. Our solution is 6000 times faster than MILP and is practical in real-time applications, 

according to the author. If maneuverable, the approach can resolve 100% of collisions. We also 

evaluate L2F against two other methods and show its suitability for quadrotor robots. 

Mu et al. proposed a local information exchange algorithm/protocol to ensure agent unanimity 

[113]. A graph-based linear consensus mechanism is designed for switching topology construction 

control. The requirements for information consensus are given. Additionally, collision/obstruction 

avoidance is addressed. Also offered is a consensus mechanism with a switching topology and 

collision/obstacle prevention. Avoiding collisions and obstacles with the enhanced artificial potential 

approach prevents potential fields from interacting with a local minimum. Lyapunov theory supports 

the protocol's stability. Finally, numerical simulations demonstrate the approach's usefulness. When 

UAVs don't see impediments, simulations show formation is fast and constant. If a UAV senses an 

obstruction or the distance between UAV I and UAV j is less than dsafe, the formation will prioritize 

obstacle/collision avoidance over formation shape. After avoiding obstacles and crashes, the 

formation will be repeated. The author proposed expanded decentralized consensus-driven control for 

multi-agent systems [114]. With a decentralized consensus-based controller and complete system 

architecture, a single Ground Control Station operator could handle the entire swarm. The technique 

focuses on formation control, waypoint tracking, and static and dynamic obstacle avoidance. The 

number of UAVs connected does not alters these goals. The controller and system architecture are 

tested in MATLAB and verified in the real world using a hardware platform. The findings show that 

small on-board computers allow the construction of a decentralized controller, improving system 

redundancy and cost-effectiveness. Waypoint placement accuracy was 87% and virtual obstacle 

avoidance accuracy was 92% without UAV collisions. 

Ren et al. examined the flight safety of a quadrotor UAV with a suspended payload approaching 

an obstruction [115]. Payload swing causes system instability and safety problems. Start with a 

detailed quadrotor UAV with a cargo system model. Once waypoints are collected, a cubic curve is 

used to create an urban reference trajectory. The Dubins trajectory approach is used in suburbs to 

create a smooth, continuous obstacle avoidance trajectory. Predictive control calculates the best path 

with lowest payload oscillation in real time while avoiding unknown impediments. The inner-loop 

regulates attitude and the outer-loop controls position using a PID controller in the trajectory tracking 

design. The simulations show that the predictive control optimization curve passes each waypoint. 

The drone can quickly avoid unfamiliar obstacles and restart its journey. We can see that the payload 

swing angle is maximal. Nonlinear quadrotor UAV models provide predictive control-based trajectory 
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planning to meet requirements. Dubins' preferred suburban path can be calculated and followed by 

the UAV in real time. 

5.3. Model Predictive Control 

Model predictive control (MPC) is an advanced method of process control that is used to control 

a process while satisfying a set of constraints. It has also been used in recent years in power system 

balancing models and power electronics. Model predictive controllers are based on dynamic models 

of the process, which are typically linear empirical models obtained through system identification. 

The primary advantage of MPC is that it enables optimisation of the current timeslot while taking 

future timeslots into account. This is accomplished by optimising a finite time horizon but 

implementing only the current time slot and then optimising again and again, as opposed to the Linear-

Quadratic Regulator (LQR). Additionally, MPC is capable of anticipating future events and taking 

control actions accordingly. PID controllers, on the other hand, lack this predictive capability. 

Although MPC is almost universally implemented as a digital control, research is underway to 

improve response times using specially designed analogue circuitry. 

Lindqvist et al. developed a Nonlinear Model Predictive Control (NMPC) framework for path 

planning and obstacle avoidance that can handle dynamic obstructions [116]. The author also 

classified trajectories to forecast barrier placements. Results show that the safety distances between 

the avoiding UAV and the approaching UAV and obstacle are 0.45 m and 0.42 m for the two 

oncoming obstacles. As with a single obstacle, the avoidance maneuver begins immediately after the 

obstacle-UAV takes off, and the solver time peaks at 35 ms. By merging a linear model predictive 

controller (MPC) with non-linear state feedback, Baca et al. developed a unique trajectory tracking 

approach for UAVs [117]. A technique that can be smoothly integrated into a UAV control pipeline 

and used by an application layer as a trajectory tracker is the goal. Additionally, the goal is to simplify 

the design and security testing of advanced planning systems by simplifying the proposal process. 

Accurate trajectory monitoring allowed the autonomous landing on the moving automobile at 15 

km/h. No rival landed faster than the MPC tracker (25:1 s). The team won the autonomous object 

collection competition with three unmanned aerial vehicles and the best score. 

The author also used Distributed Model Predictive Control (DMPC) with Mixed Integer 

Quadratic Programming (MIQP) to improve the trajectory [118]. The collision avoidance system uses 

DMPC and trajectory tracking to limit collisions based on ICAO Right of Way regulations for human-

piloted flights. Expressing the DMPC as a Mixed Integer Quadratic Programming optimization 

problem reduces computing load. When a collision is detected, the control algorithm slows down like 

humans. The MPC performs a turn maneuver if the aircraft cannot be decelerated and a collision is 

imminent. MPC optimizations on the receding horizon are often calculated in less than 0.2s, indicating 

that the method is ready for real-time implementations. 

Huang et al. created a collaborative collision avoidance system for many UAVs to satisfy the 

need for independence for one [119]. This concept can prevent UAV collisions in shared airspace. 

Many unmanned aerial vehicles (UAVs) struggle to work together due to airspace issues. The author 

used a novel model predictive control (MPC) strategy to prevent UAV collisions. In addition, the 

Extended Kalman filter (EKF) predicts mobile obstacles or targets in confusing environments. The 

data reveal that the suggested technique reduces UAV task completion time, improves its performance 

metric, and ensures its ability to monitor the target, improving work fulfillment efficiency. 

5.4. Artificial Neural Networks (ANN) 

An Artificial Neural Network (ANN) programs robots to think and act like humans. Additionally, 

the term can be applied to any machine that can learn and solve issues like a person. AI-driven drones 

use computer vision mostly. This technology lets drones identify, photograph, and analyze and store 

data on the surface while in motion. UAVs are promising for agricultural plant protection. 

Unorganized fields with unknown objects increase the risk of crashes, threatening flying safety. The 

author proposes deep-learning-based object detection, image processing, RGB-D information fusion, 

and a task control system (TCS) to improve UAV intelligence and reduce operational safety and 
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efficiency risks [120]. Deep learning and a depth camera help the UAV identifies impediments. It 

recognizes impediments and delivers category, profile, and three-dimensional geographical position 

information. Several experiments test the UAV's ability to identify and avoid obstacles. CNN has an 

average detection accuracy of 75.4% and processes a single image in 53.33 milliseconds. Additionally, 

the obstacle's closeness to the depth camera considerably affects its shape and location forecast. Depth, 

width, and height measurements from 4.5 to 8.0 meters have uncertainties of 0.53, 0.26, and 0.24 

meters, respectively. The simulation flight trials showed that the UAV can independently pick the best 

way to avoid obstacles and design a flight path that minimizes distance using RGB-D sensor fused 

information. 

Yang et al. used a lightweight probabilistic CNN to estimate depth and avoid obstacles in real 

time. This method targets a lightweight, energy-efficient drone [121]. The proposed probabilistic 

convolutional neural network (pCNN) accurately predicts depth map and confidence level for every 

video frame. The proposed pCNN's accuracy is considerably improved by using sparse depth estimate 

from visual odometry to guide dense depth and confidence inference. The estimation depth map is 

turned into Ego Dynamic Space (EDS) by incorporating the drone's dynamic mobility limits and 

spatial depth map confidence values. The EDS system calculates navigable waypoints and generates 

drone control commands. Our depth prediction method processes at 12Hz and 45Hz on TX2 and 

1050Ti GPUs. This is 1.8 times faster and more accurate than current approaches for depth estimation. 

Extensive trials using public databases confirmed these conclusions. Dai et al. used CNNs to teach a 

quadrotor unmanned aerial vehicle (UAV) to autonomously navigate unfamiliar and chaotic 

environments and avoid obstacles [122]. To improve UAV robustness and decision-making, a two-

stage end-to-end obstacle avoidance architecture is created. This architecture uses a single forward-

facing monocular camera. Initial prediction uses convolutional neural networks. Depth-wise 

convolution, group convolution, and channel split efficiently forecast steering angle and collision 

probability in the model. The control system converts the steering angle into a UAV yaw angle 

command in the second stage. The grayscale system flew 368m on Road1 and at least 154m on Road2 

in road tests. This shows that the suggested automated obstacle avoidance system can handle highway 

sceneries and adapt to straight and curved highways. The detailed trod test proves the UAV can fly 

independently over extended distances. However, lawns near the tread affect the obstacle avoidance 

mechanism. Grayscale imaging systems can seamlessly traverse a continuous fold line during 

continuous curve tests. In the forest flying test, the grayscale photo network found a better route. The 

system does a 45-meter fly after being trained with datasets under varied illumination conditions and 

outperforms other systems during the night test. 

Back et al. developed a UAV approach that uses vision to follow bike tracks and avoid 

obstructions [123]. The Convolutional Neural Network guides the UAV to follow a course and stay 

near the center. CNN control instructions are held for a certain time to address disturbances like wind 

that deviates the UAV from its path or the camera failing to catch the trail. These commands fix the 

issues and resume normal operation. Using optical flow computed with an additional CNN, trails can 

be navigated safely. The UAV uses trail tracking, disturbance recovery, and obstacle avoidance to 

handle trail travel scenarios. The suggested technique performed well based on CNN classification 

accuracy, runtime, and GPU use. Trail navigation performance is assessed by evaluating the average 

distance from the trail center in simulations and experiments. Lowering the average trail distance with 

lateral offset control and longitudinal offset control has been proven. The disturbance recovery 

approach is tested using simulations. Evidence reveals that the UAV may return to its path after an 

unforeseen perturbation. Ultimately, the combined algorithm's efficacy is assessed by examining 

UAV trajectories in various settings. Another study suggested employing deep reinforcement learning 

(OA) for UAV obstacle avoidance [124]. Partial observability—UAVs' ability to receive and store 

environmental structure data—is the foundation of this method. They can make more accurate 

navigation selections in future operations. This research created and tested a Deep Recurrent Q-

Network with Temporal Attention. A deep reinforcement learning robotic controller uses this network 

to help UAVs avoid obstacles in congested and unfamiliar environments. Current monocular vision 

UAV obstacle avoidance methods rely significantly on environmental data, like the previous 
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approach. These controllers fail to use the copious environmental data to make judgments. The results 

show that the approach has a high inference rate and transferability, making it ideal for intelligent 

robotics. Our solution only works for avoiding obstacles and can be effortlessly integrated with a path 

planner that determines the route from the initial to the final place. 

5.5. Potential Field Function 

Force-field methods, sometimes called potential field methods, use a repulsive or attractive force 

field to push or pull an agent/robot. This technique relies on the robot's movement, geometry, and 

obstacle geometry; hence it requires accurate obstacle position and form knowledge. Dynamic 

obstacles have unknown properties. Yamaguchi and Tamagawa developed a collision-prevention 

waypoint navigation method using artificial potential with random priority [125]. A multi-robot 

navigation system that can perform many tasks must prevent collisions by transmitting information 

about each robot's course. Robots have an autopilot system with waypoint navigation, but using it for 

collision avoidance is harder than creating a course. We developed a new waypoint adjustment method 

for path planning. This approach uses random-priority artificial potential. We also suggested using k-

nearest neighbor and Delaunay triangulation to increase the velocity of the artificial potential method. 

The testing results show that random priority improves speed by nearly 80%. Additionally, the random 

priority technique is identical to slotted ALOHA wireless circumstances. Muhammad et al. developed 

a new obstacle avoidance planning method for local minimum. This method enhances the artificial 

potential field algorithm [126]. This issue's principal downside is the local minimum and target 

unattainability when obstructions are close. The updated artificial potential field (APF) technology 

ensures the robot avoids stationary impediments and reaches the destination efficiently. This method 

lets the robot reach the objective without obstacle avoidance issues. Unlike the APF algorithm, this 

technique does not imprison the robot in the local minimum. Simulations show that the improved 

artificial potential field technique helps the robot avoid collisions and reach the destination. 

F. Wang et al. developed a graph theory and artificial potential field theory-based distributed 

formation control method. This method solves UAV self-collision, obstacle avoidance, and formation 

communication architecture challenges. This method is described in [127]. The Artificial Potential 

Field technique is prone to hesitating and trying to solve problems that are impossible due to 

obstructions. The UAV formation can evade obstacles while following the control plan, attain the 

appropriate speed and formation quickly, and maintain stability while traveling to the objective. Fu et 

al. created a consensus-based collaborative control law for UAV swarm maintenance and 

reconstruction [128]. The author also used an artificial potential field and a consensus mechanism to 

maintain and rebuild swarm structure while avoiding impediments. The swarm formation 

transformation approach's fixed UAV deployment in the target formation is a negative. CBBA is used 

to allocate positions from the initial formation to the target formation, making formation 

transformation more flexible and efficient. Simulations show that the UAV swarm can quickly 

establish, sustain, and recreate the intended configuration while avoiding obstacles. Pre-assignment 

does not produce a V-shape, but CBBA position allocation does. 

Another researcher developed a flexible collision avoidance method for various unmanned aerial 

vehicles [129]. Modifying the APF function utilizing communication topology and weights optimizes 

communication information flow and ensures primary member safety. A repulsive potential based on 

the UAV's relative velocity to the obstacle improves obstacle avoidance in the multi-UAV. Because 

the APF technique places little importance on communication topology and weights, this strategy is 

used to ensure the primary safety of critical formation members. A weakly rigid geometric 

arrangement cannot be sustained indefinitely by most collision avoidance algorithms. Mathematics 

and execution are simple in the collision avoidance strategy. Three-dimensional flight simulations 

using five six-degree-of-freedom unmanned aerial vehicles (UAVs) indicate that the flexible collision 

avoidance technique can quickly avoid collisions while maintaining a stable geometric formation. 

Multiple algorithms were used to avoid obstacles in Zheng et al.'s UAV flight path planning system. 

The UAV's movements are tracked by a revolving vector field [130]. Repulsion between UAVs takes 

into consideration distance and target-directed gravity to control them. UAVs are guided to the target 
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using the artificial potential field method while avoiding obstacles. A rotating vector field approach 

for avoiding convex polyhedral obstacles is also offered. The smoothing approach is combined with 

vector field rotation to ensure a safe and smooth trajectory. Simulations show that the subsequent 

rotation vector field can design UAV collision avoidance and address “dead zone” and “jitter”. This 

allows UAV trajectory planning in difficult situations to be more flexible. 

5.6. Geometric Guidance 

Geometric techniques use form features to maintain minimum agent distances, such as UAVs. 

The time to collision is calculated using UAV distances and velocities. The author developed TRACE 

to train quadrotor UAV models using a unique cooperative collision avoidance technique [131]. The 

author created a mathematical model of coordinated operations, including speed and direction 

changes, to prevent UAV collisions. A strategy was developed to optimize these actions by 

minimizing energy expenditure while considering flight dynamics. The author created a learning 

model that can swiftly and reliably switch two UAVs' relative states to their ideal reciprocal behaviors 

when a collision is detected. This model will be optimized and run on UAVs. Thus, optimized direct 

current (DC) operations were more effective across a wider range of UAV approach angles. The 

energy difference between moves and no maneuvers was less than 2.5%. In training and evaluating 

425 new cases, the classifier had 87.5% accuracy. The action models' prediction accuracy over the 

optimal values was always over 90%. More investigation of performance under new situations 

revealed a 95.3% collision-avoiding rate. 

To prevent multiple unmanned aerial vehicles (UAVs) from colliding with moving and stationary 

objects, C. Y. Tan et al. developed the 3D velocity obstacle methodology. Their publication outlined 

this method [132]. The multi-UAV system's main goal is to complete tasks without colliding with 

airspace impediments. A tridimensional collision avoidance system that helps automobiles perform 

safely is the goal. The author suggested improving 3-D velocity obstacle (VO) approach. They also 

suggested using the pyramid cone technique to create a stationary obstacle-compatible collision 

avoidance system. Thus, the unmanned aerial vehicle avoided the immovable impediment and 

completed its objective. A collision is avoided, and the goal is achieved. The trajectory data shows the 

UAV avoided the stationary barrier. Unmanned aerial vehicle minimum distance from barrier is 

0.3521 m. 

The other author hypothesized that kinematic decomposition helps the UAV avoid collisions and 

sustain speed [133]. Collission-avoidance vector fields, a novel type of local parameterized guidance 

vector field, enable spontaneous movement around obstacles in the proposed technique. These vector 

fields are formed by studying UAV kinematics and modifying velocity based on proximity. The 

suggested UAV kinematic decomposition incorporates collision avoidance and constant-speed 

mobility. Harmonic potentials and navigation function parameter adjustments are computationally 

expensive, making them difficult to apply on real-time systems. They only work for obstacle 

replanning. CAVF-based motion plans incorporate stationary and moving impediments with 

minimum processing complexity, making them suitable for real-time applications. The suggested 

controllers also give trajectories that exactly follow these motion plans within constraints. 

According to K. Wang et al., this practical obstacle avoidance path planning method should 

contain geometrical features [134]. Agricultural UAV coverage paths are determined using obstacle 

avoidance path planning. Agriculture UAVs must be operated by remote control pilots in fields with 

trees, poles, or cabins for safety. In a broad expanse with limited visual perception, this could be 

problematic or dangerous. Data suggests the field is a concave polygon with three obstacles. The field 

crosses one obstacle and passes two nearby. Obstacle polygons intersect field polygons, trimming 

them. The outcome will cover the field. Evidence shows the technique is efficient and feasible. 

5.7. Optimisation Based 

Optimisation uses geographic data to construct an avoidance trajectory. Probabilistic search 

algorithms use limited and uncertain data to find the best search areas. To reduce the computational 

cost of these algorithms, ant-inspired algorithms, genetic algorithms, Bayesian optimization, gradient 
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descent-based approaches, particle swarm optimization, greedy methods, and local approximations 

have been developed. Y. Hu et al. developed a distributed technique that accounts for UAV velocity 

and collision avoidance. This technique is designed for mass UAV motion planning [135]. UAVs 

often have only localized awareness of the network, and their limited sensing and communication 

capabilities make it hard to receive information from other UAVs. To avoid problems, unmanned 

aerial vehicles (UAVs) must foresee dangers and take precautions. This work showed motion planning 

in 2D and 3D environments. The work examined using the velocity-aware A* algorithm, collision 

prediction approach, and collision avoidance algorithm in rotor UAV swarm applications with 

fundamental kinetic control logics. Despite longer real path lengths and higher time costs, the 

recommended technique has a good success rate. Path and time expansion depend on the situation, 

especially the starting and ending points, but a broader area and more UAVs will quickly increase 

path complexity and mission duration. UAVs have an average velocity of 0.65, which can change 

with acceleration and deceleration. 

J. W. Hu et al. developed a distributed formation control and collision prevention system. This 

method uses Voronoi partitioning and a standard artificial potential field [136]. Voronoi partition 

theory divides space into zones for collision prevention. These task zones limit UAV movement. 

Popular artificial potential fields are used to develop the motion control law. Two UAVs on the verge 

of colliding often stop at a local optimum because the repulsive force equals the attracting force. When 

quadrotors collide, destinations are swapped. It prevents collisions between UAVs that are farther than 

the safe distance. The Fast-Geometric Avoidance algorithm (FGA) by the author combines geometric 

obstacle avoidance with optimal start time. This depends on kinematics, collision probabilities, and 

navigation [28]. Fast Geometric Avoidance (FGA) uses kinematics, collision probability, and 

navigation restrictions to determine the best start time after geometric obstacle avoidance. Simulations 

of several mission situations reveal that this strategy avoids many barriers better than earlier methods. 

Monte Carlo simulations and aircraft simulator flight missions verify the algorithms' efficacy. 

According to Y. Wu et al., the improved consensus algorithm (ICA) should align the UAVs' three 

degrees of freedom (DOFs) with their relative positions. Conventional consensus can contain 

formation information with this change [137]. The suggested minimal adjustment method addresses 

UAV maneuverability restrictions. Use particle swarm optimization (PSO) to avoid obstacles. The 

ICA-PSO technique handles static barriers, whereas the MPC-PSO strategy handles dynamic ones. 

These algorithms can be combined to handle more complex situations. The simulation findings show 

that the ICA can build UAVs with diverse initial conditions that meet all criteria. The obstacle 

avoidance algorithm provides UAV formation flight safety and efficiency. 

Krishnan and Manimala devised a Particle Swarm Optimization-based Collision Avoidance 

algorithm (PSO-CA) to create escape maneuvers around obstacles and suggest new waypoints for 

UAV route dynamically modification [138]. The author suggested using a “obstruction sense and 

avoid” algorithm and a logical decision-making mechanism to help the UAV change flight routes if it 

finds an obstacle. A 10-kilometer radar system detects impediments, and the unmanned aerial vehicle 

(UAV) adjusts its movements to the radar information, making it suited for new terrain. The suggested 

technology will autonomously guide the UAV away from traffic. The algorithm's durability was 

shown by gradually increasing obstacles and successfully guiding the UAV along the safest trajectory 

numerous times. The graphical results show that the system works in complex situations and may be 

used in all unmanned aerial vehicles (UAVs) for real-time autonomous flight. Another author 

described UAV path planning and obstacle avoidance for cage culture assessment [139]. The proposed 

technology automatically inspects cage farms, saving manpower and money. It's like the traveling 

salesperson. Genetic algorithms work for TSP and cage culture analysis. Along with path planning, 

IPSO is employed to avoid cage collisions. IPSO works in static or dynamic environments with 

impediments. The suggested IPSO outperforms others. The shortest route to the goal. IPSO's path has 

less changes in direction and turn angles. IPSO chooses the best path length when the UAV faces 

several obstacles. 
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As a summary, the research shows a trade-off between computational time, complexity, optimal 

solution requirements, pre-mission path planning, and static and dynamic adaptability. The proper 

algorithm must be chosen depending on operational requirements, or one can merge various collision 

avoidance approaches or two-layered collision avoidance strategy. For local static/dynamic barrier 

avoidance, sense and avoid approaches, the simplest and most resilient with minimum data overheads 

and response times, are safe in all scenarios. To avoid local minima and reach the goal without 

collisions, it must be paired with a more efficient path planning algorithm. Because the sense and 

avoid approach is not reliant on external communications, reacts instantly to environmental changes, 

has quick response times, and low data overheads, it can be used as a failsafe/standalone approach to 

ensure UAV safety, especially in highly dynamic environments where adaptability and flexibility are 

needed. 

6. Sensor Fusion 

Sensor fusion reduces uncertainty by combining sensor data from numerous sources. Integrating 

video camera data with WiFi localization signals improves indoor object location accuracy. Increased 

precision, completeness, and reliability may be included in uncertainty reduction. Or, it may be a new 

perspective like stereoscopic vision, which calculates depth by integrating two-dimensional images 

from two cameras with slightly different angles. Fusion data sources need not be same. Fusion might 

be direct, indirect, or output. Direct fusion uses soft sensors, past sensor data, and comparable or 

dissimilar sensors to integrate data. However, indirect fusion combines environmental knowledge and 

human input. Grid Map, Kalman Filter, Particle Filter, SVM, CRF/MRF, Deep Learning, Fuzzy 

Logic, and Evidence Theory are sensor fusion algorithms. 

The Sock et al. Grid Map is 2D probabilistic. Our method uses 3D-LIDAR and camera. Robotic 

applications leverage LIDAR and camera data for their benefits [140]. This approach builds 

traversability maps for each sensor assuming unique data. The visual sensor traversability classifier 

updates automatically. 3DLIDAR assesses terrain crossability using inclines. Combining Bayes' rule 

and two probability maps increases detection. Sensor responsibilities vary by approach. The author 

used a UGV in tough terrain to test the method. Mapping aids navigation, planning, and manipulation. 

Tran et al. propose a fusion architecture that builds a 3D map without a scanner or visual processing 

using 2D LIDAR and 3D ultrasonic sensors [141]. Two sensor models are suggested for map updates. 

Our fusion approach supports 2D/3D maps. We compare probability combining methods and study 

strategy selection. Real-ground robot research indoors. We employ 2D and 3D maps to better reflect 

the environment. Sensor fusion saves resources and improves environmental and ego-pose 

assessments. Cheap 3D ultrasonic sensors improve the robot's environment perception. Robots with 

limited resources require this. 

Kalman Filter provides object tracking for autonomous vehicle vision systems. Ego-vehicles 

predict object placements and plan motions via tracking. These methods frequently use RGB or 

LIDAR sensor data. Combining 2D-RGB camera images with 3D-LIDAR data is beneficial. An 

algorithm by Park et al. identified and estimated airborne object positions for BVLOS UAV safety 

[142]. LiDAR and vision detect objects. The YOLOv2 architecture recognizes 2D pictures. We cluster 

LiDAR point clouds to detect things. Sensor properties affect detection rate. Inaccurate detection 

algorithms need another sensor. Kalman filters increase single-sensor detection. Sensor data was 

blended to improve detection. The 3D position of an object is computed from its pixel and LiDAR 

distance. We tried fusion in the Gazebo simulator. Obstacle recognition, dynamic state evaluation, 

and avoidance technique are covered in the thesis. Buchholz assessed SAA's viability in static and 

dynamic operations [143]. This study uses dynamic simulation and data post-processing. 3D LIDAR, 

visible cameras, and 9 DOF IMU sensor suites enable autonomous UAS Situational Awareness and 

Analysis in urban areas. Fusion of inertial measurements and LIDAR point clouds localizes and 

improves obstacle data, producing encouraging results. The data fusion method and SAA guidance 

system need improvement. 
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Particle Filters are utilized in many fields to reconstruct sparse signals. Liu and Sun create the 

probability function of a particle filter tracker that integrates color visual and thermal data for object 

tracking using joint sparse representation [144]. On both modalities, sparse representation is calculated 

jointly and tracking results are pooled using a minimum coefficient procedure. Update modality 

reference templates and improve tracking robustness using co-learning. The suggested fusion 

methodology outperforms previous methods in the OTCBVS database. Industrial uses in places with 

poor satellite communications are increasing for unmanned aerial robots. A three-dimensional method 

by Carrasco et al. can find airborne robots in difficult settings [145]. These adaptive platforms must 

be trustworthy to add value. A 3D laser scanner, radio sensors, a previous map, and input odometry 

are used in the probabilistic solution. The aerial platform can estimate posture with this. The 

experiments show the method is accurate, durable, and computationally efficient. 

SVM requires consideration of real-world metropolitan driving conditions while using perception 

sensors without position information. Li et al.'s autonomous driving system uses LIDAR and visual 

data for real-time optimal-drivable-region and lane recognition [146]. This multimodal method covers 

the most passable areas ahead of a vehicle. We recommend merging LIDAR and vision data at the 

feature level to find the best drivable area. A conditional lane identifying method is then selected based 

on the best driving area. This strategy works on surfaced and unsurfaced roads. Multiple experiments 

prove system efficacy and durability. 

Häselich et al. examine CRF/MRF 3D laser range finder data [147]. The neighboring landscape 

is a two-dimensional grid with obstacles and paths.  Markov random fields show terrain cell 

interactions. Grid cells may carry contextual information to avoid sensor noise or ambiguity 

misclassification. Camera photos add color and visual details to the point cloud, complementing laser 

range data. Classification uses 3D points and camera pictures. Innovative online landscape 

categorization uses Markov random fields with camera and laser data. The proposed technique can 

recognize highways and obstacles with 90% recall for an autonomous mobility robot. Camera and 

LIDAR data help Xiao et al. improve the conditional random field (CRF) model [148]. The author 

labeled pixels and LIDAR points using a hybrid energy function after alignment. A boosted decision 

tree classifier predicts pixel and LIDAR point unary potentials. The hybrid model's paired potentials 

represent picture, point cloud, aligned pixels, and LIDAR point contextual coherence. This method 

probabilistically blends sensor data to enhance information usage. To extract road sections with graph 

cuts, optimize the hybrid Conditional Random Field (CRF) model. In KITTI-ROAD benchmark 

dataset empirical study, the recommended strategy beats existing methods. 

For Deep Learning, Ku et al. propose AVOD, an Aggregate View Object Detection network. 

This method is for Deep Learning [149]. Subnetworks share features using LIDAR point clouds and 

RGB images in the proposed neural network design. The proposed road scene Region Proposal 

Network (RPN) leverages a novel architecture for multimodal feature fusion on high-resolution 

feature maps. These suggestions enable the second-stage detection network predict three-dimensional 

object size, direction, and categorization. This architecture performs well on the real-time KITTI 3D 

object identification benchmark with low memory usage. This makes it perfect for driverless vehicles. 

When cameras and LiDAR fail, several modalities raise environmental awareness. Sonar and radar 

are hard to integrate since traditional sensor techniques don't adapt to these environmental 

representations. Balemans et al. employ modality prediction to keep current operations and decouple 

an autonomous agent's sensory system from navigate stack [150]. The author forecasted LiDAR point 

clouds using eRTIS, our 3D in-air acoustic ultrasonic sensor. To safely navigate with variable and 

imperfect visual signals, the author tested current algorithms with predicted data. 

Industrial vehicles use LiDAR and a single-color camera to detect passive beacons in Wei et al.'s 

Fuzzy Logic demarcation method. Space-limited vehicles use model-predictive control to circumvent 

limitations [151]. Beacons are orange traffic cones with reflective poles. In addition to beacons, 

LiDAR may misidentify shiny surfaces like worker safety jackets. Deep learning to map camera 

beacons onto LiDAR space lowers false positives, says the author. The Mississippi State University 

Center for Advanced Vehicle Systems (CAVS) concluded that the proposed strategy decreases false 
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positives and preserves accuracy. Due to imprecision and ambiguity, sensory data extraction is 

difficult. Data collection is complicated by multiple sensors. Majumder and Pratihar used fuzzy 

clustering and prediction techniques to fuse multi-sensor data [152]. Data was categorized and a fuzzy 

reasoning-based forecasting tool created using entropy-based fuzzy C-means clustering. Clusters in 

this piece are tiny and unique. It also introduces cluster-based reasoning. We tested the method with 

two multi-sensor data categories. The new method outperformed older ones on both data sets. This 

method uses similarity-based fuzzy clustering to search the dataset and develop a fuzzy reasoning 

tool. 

Evidence Theory says Advanced Driver Assistance Systems (ADS) help drivers complete 

challenging jobs and reduce risk. The automobile uses sensors to create and maintain an internal 

environment model. Vehicle perception ties it to static and moving obstacles in space and time. 

Chavez-Garcia recommended SLAM for stationary components and DATMO for mobile components 

[153]. In some cases, perceptual output is used to determine the ideal driving behavior. System 

reasoning and control require exact environmental imitation. An effective object tracking system must 

classify moving objects accurately. Intelligent cars use sensors. multiple sensor fusion has been 

investigated for a long time since it requires combining input from multiple perspectives to generate 

an accurate model. Duplicate environmental measurements do this. Multiple perception stages fuse. 

Author tested recommended methods. The author compared pedestrian (cyclist) recognition, 

categorization, and monitoring using real driving data. A composite representation at multiple 

perceptual test levels yields good results. Starr and Lattimer suggest sensor fusion could improve 

smoke-obstructed rangefinding. LWIR stereo vision and spinning LIDAR would be combined [154]. 

This method uses LIDAR's precise measurements and LWIR cameras' perceptual abilities in 

translucent and foggy environments. Multiple-resolution voxel-domain sensor data was integrated 

using the Dempster-Shafer theory of evidence. LIDAR data was evaluated for intensity and distance 

to distinguish returns with high and moderate attenuation. High-attenuation LIDAR return data was 

used to model a sensor. LIDAR low-attenuation returns and LWIR stereo vision points were used to 

generate accurate occupied and open space sensor models. The fusion method was tested in a naval 

fire in a room and hallway with different smoke densities. Room-hallway assessments were compared 

to baseline rangefinding in trials. During occupancy, fusion is 5-10% more accurate than LIDAR in 

good weather. LIDAR cannot work in dense fog. LIDAR performed 40% worse in haze than fusion. 

Fusion and LIDAR performed comparably in clear conditions, differences of less than 5%. 

7. Discussions and Conclusions 

The previous sections reviewed unmanned vehicle collision avoidance technologies and tactics 

in detail. Conventional classification is shown in Table 1. Both passive and active sensors were 

investigated for obstacle detection in Table 2. Analysis covered sense and avoid, conflict resolution, 

model predictive control, AI, potential field function, geometric guiding, and optimization-based 

collision avoidance systems. Table 3 summarizes and assessed the pros and cons of various 

approaches. 

Instead of vertical lift rotors, fixed-wing drones generate lift with wings. They are more efficient 

since they just need energy for propulsion, not aerial position. Thus, they may travel farther, explore 

wider areas, and watch their target longer. Gas engines are efficient and power sources. Many fixed-

wing UAVs can fly for 16 hours due to fuel's higher energy density. The inability of fixed-wing aircraft 

to hover makes them unsuitable for aerial photography. Due to their size, these objects require a 

runway or catapult launcher for propulsion and a runway, parachute, or net for safe retrieval. Only 

small fixed-wing drones can hand launch and belly land in a field. In addition, learning to fly fixed-

wing drones is expensive and complicated. 

The fixed-wing hybrid VTOL seamlessly transitions between multi-rotor platforms and drones. 

Military and commercial pilots can use fixed-wing VTOL drones. These drones can fly vertically 

without a launcher or runway. So, they can work nearly anywhere. Compared to multi-rotor UAVs, 

fixed-wing UAVs can fly faster, further, and longer, covering more ground. VTOL fixed-wing drones 
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increase coverage and data collecting for large farms. Producers can quickly analyze crop health and 

other indicators, saving pesticide and fertilizer costs. Moist and dry regions can be identified by a 

thermal camera payload. VTOL fixed-wing drones educate decision-makers in real time, boosting 

pre-planning, control, and emergency reaction while reducing operator risk. 

Single-rotor drones exhibit superior efficiency compared to multi-rotor drones and can be 

powered by a gas motor to achieve extended flight durations. According to aerodynamics, a larger 

rotor blade rotating at a lower speed is more efficient. Quadcopters are more efficient than octocopters 

due to certain reasons, and certain long-range quadcopters are equipped with large propellers. A 

single-rotor drone can be equipped with elongated blades that bear a resemblance to rotating wings 

rather than traditional propellers, thereby enhancing its effectiveness. Drawbacks of these systems 

encompass intricacy, expense, fluctuation, and the potential hazard posed by their sizable rotating 

blades. A multi-rotor propeller has the potential to inflict significant harm, while the likelihood of 

causing additional damage is low. Tampering with the elongated, razor-edged blades of a solitary rotor 

drone could result in more severe harm. Single-rotor drones are of intermediate difficulty, positioned 

between multi-rotor and fixed-wing aircraft. Hovering enables a gradual initiation and progression. 

These gadgets exhibit insufficient stability and lack the capacity to compensate for poor landings. 

Their intricate mechanical design necessitates meticulous maintenance. 

A tri-copter drone consists of three robust motors, three controllers, four gyros, and one servo. 

Motor and location sensors are positioned at the furthest ends of three arms. Adjust the throttle lever 

to increase the altitude of the tri-copter. The gyro sensor will rapidly transmit the signal to the 

controller, which will regulate the rotation of the motor. A variety of traditional sensors and technical 

components are utilized to ensure that a tri-copter remains stable during its flight. Variable-angle 

propellers are advantageous for three-rotor aircraft. The aircraft's ability to yaw is facilitated by the 

rear propeller, which provides tailplane-like characteristics and allows for controlled counter-rotation 

forces. Tri-rotor boats have superior stability and maneuverability compared to multi-rotor boats, but 

necessitating an additional servo and control hardware and software. The configuration employs a 

reduced number of propulsion motors, hence enhancing energy efficiency. The increased rotor spacing 

enables the use of larger propellers and provides a clear camera field of vision. 

Quad-copter drones have a greater lifting capacity compared to helicopters of the same size. The 

quadcopter's rotors provide enough lift to counteract its weight. In comparison to a helicopter of 

equivalent dimensions, it has a greater capacity for transporting cargo. This technology is utilized in 

both military and commercial unmanned aerial vehicles (UAVs). The craft's four rotors enable it to 

effortlessly elevate substantial loads without requiring any modifications to its engineering. Therefore, 

the ship is economically efficient and has a greater carrying capacity. Quad-copters possess a high 

level of agility. They effortlessly levitate and maneuver in any orientation. Nevertheless, it possesses 

a lower level of power compared to hexa- and octo-copters. This suggests that it is incapable of lifting 

as much weight as the other two boats. Contrary to hexa- and octo-copters, the quad-copter 

experiences a crash in the event of motor failure. 

A hexacopter has the ability to remain airborne even if one of its propellers is damaged or not 

functioning. The propellers are equipped with motors that have a 120-degree angle. If one engine fails, 

the remaining five engines are capable of sustaining the flight of the jet. The drone will descend 

smoothly, ensuring the safety of the camera. This spacecraft is capable of safely landing even if two 

propellers are lost. There are four quadcopters. Indeed, it possesses the ability to fly. Hexacopters have 

the ability to achieve more altitude than quadcopters because they are equipped with six propellers. 

Propellers generate more lift than quadcopters. This drone surpasses quadcopters in terms of speed. 

As a result of having additional propellers. Quadcopters often have a lower weight compared to 

hexacopters. It has a greater capacity than a quadcopter. Thus, it can hold a high-performance 

hexacopter camera. Building quadcopters is cheaper than hexacopters. Extra rotors cost more. 

Additionally, they outgrow quadcopters. This diminishes their density. Changing hexacopter rotors is 

more expensive. 
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Octocopters fly rapidly with eight propellers. The vessel gains considerable lifting power and 

acceleration. Octocopters outperform quadcopters and hexacopters. Agility does not compromise 

mastery. The pilot controls the plane precisely with numerous rotors. Octo-copters fly amid rain and 

strong gusts. Even without a motor, this ship can fly. Octo-copters may fly with two or three broken 

components. Flying with four or five engines is the vessel's principal benefit. Airborne pay is 

safeguarded. Excellent engine control, stability, and hovering. Extreme heights are possible. Moving 

fast and agilely. Octo-copters film movie scenes. Octocopters carry plenty. Big enough for cameras 

and batteries. Additionally, it can transport commodities. This device is huge. Large eight-rotor plane. 

Its construction and operation are costly. Large power output makes rotor acquisition expensive. 

Breakage replacement may be expensive. Octo-copters are energy-hungry. Its flight time is short. 

According to the literature, each drone model has pros and cons. The tri-copter and quad-copter 

are economical and lightweight, making them suited for hobbyists and small equipment, but they 

cannot carry big loads. Despite motor failure, the hexa-copter is stable and can fly. This plane 

outperforms the quad-copter in altitude and cargo. The octo-copter can fly high and carry heavy loads, 

making it the most powerful of the three drones. However, this drone is the most expensive and 

requires frequent charging. Due to its benefits and reliability in critical tasks, the hexa-copter is a good 

drone to consider. Compared to octocopters, manufacture and maintenance are cheap. 

Active sensors have a transmitter that emits a wave within a predetermined wavelength range 

using its own energy source and a receiver that detects and analyzes waves reflected by environmental 

objects. An external energy source is needed for a passive sensor to detect light or energy emitted or 

reflected by objects. Cameras need an external light source to function, while LiDAR sensors actively 

generate laser pulses onto the scene and analyze the reflected signals. LiDAR data is not limited by 

the quality and intensity of an external light source, unlike camera data. 

Active sensors require more power than passive ones since they send and receive. Data 

processing is simplified by active sensors' focused data—reflected copies of their own signals. Passive 

sensors like visual cameras must filter and process raw image data to discover and evaluate relevant 

points of interest, which needs heavy processing. Camera-based collision avoidance is 

computationally expensive and difficult to use for rapid object recognition and decision-making. It 

can deliver more accurate environmental data than LiDAR, sonar, or radar in the right lighting. Range 

systems beat camera-based collision avoidance due to their lower processing requirements, faster 

response times, and ability to handle severe sunshine and weather. 

Table 2 shows that each sensor has pros and cons, implying that no one sensor can solve collision 

avoidance. Using many sensors covers a larger region and mitigates places outside their range. By 

using the strengths of other sensors, combining them can overcome their weaknesses. 

Table 2 shows that active sensors are more accurate than passive ones. Passive sensors use less 

power than active ones. Because active sensors transmit the signal before capturing the data for 

calculation. Passive sensors broadcast and read the signal from an external power source like sunlight 

or the object's source. Processing level is also important. Active sensors' data is focused and targeted, 

unlike cameras', and does not provide extraneous information. Processing active sensor data is easier 

than passive. Active sensors require less computational power to evaluate data than passive sensors, 

which raises another concern. Cameras involve complicated calculations for image processing and 

deleting extraneous data, making them more computationally intensive than LiDAR sensors. 

Table 2 offers another thought-provoking look at how noise, weather, and light sensitivity affect 

data. Active sensors are less susceptible to noise than passive sensors because they can regulate data 

and generate transmission waves. LiDAR and ultrasonic sensors work in various environments, even 

in daylight, while cameras need optimal lighting to take pictures. 

A passive sensor for obstacle detection may fail to distinguish between many objects in the 

surroundings, resulting in collisions. In one unfortunate event, a Tesla vehicle's collision avoidance 

technology failed to distinguish between a well-lit sky and a tractor trailer [155]. 
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Collision avoidance strategies can be assessed from several angles and utilizing different criteria 

[156]. Evaluation metrics are usually depending on the algorithm's use case goals and platform 

constraints. Each collision avoidance algorithm has pros and cons and different evaluation measures 

to determine its viability for a certain application. Table 3 summarizes the pros and cons of the most 

widely utilized methods in the field. To compare numerous elements of the algorithms, we classed 

them independently using seven evaluation criteria. This table explains these criteria: 

The first metric is complexity: In terms of algorithm design, the geometric, model predictive 

control, conflict resolution, and force-field methods are the most complicated (computational cost). 

In this comparison, the optimisation-based and artificial intelligence methods are of medium 

complexity, while the sense and avoid approaches are the least difficult. 

The second metric is communication dependence: Sense and avoid approaches do not rely on 

communication because they operate locally and make judgments without involving other UAVs or 

systems. Some of the force-field literature reviewed relies on communication with other UAVs, while 

most of the other work does not, demonstrating that force-field approaches are not overly reliant on 

communication and that it depends on the model and implementation. Other methods, on the other 

hand, rely on interaction with other nodes/UAVs. 

The third metric is pre-mission planning: Sense & avoid, conflict resolution, and artificial 

intelligence do not require it. The collision cone and the velocity obstacle are used in geometric 

approaches to plan the path. Pre-mission path planning is required for optimisation and force-field 

methods to work at their best. 

The fourth metric is robustness: All mentioned approaches are capable of being robust depending 

on the way they are implemented. 

The fifth metric is 3D compatibility: Methods such as sense and avoid, geometric, artificial 

intelligence, and optimisation have a lot of experience with 3D surroundings. Many academics, on the 

other hand, are working on determining the viability of applying force-field approaches, model 

predictive control, and conflict resolution in 3D dynamic environments. 

The sixth metric is real-time performance: Sense and avoid, geometric, artificial intelligence, and 

model predictive control all perform better in real-time than force-field, conflict resolution, and 

optimisation methods, because sense and avoid do not require excessive processing to avoid changes 

in the environment, such as approaching obstacles. Additionally, geometric approaches are quick and 

computationally efficient. However, the drawback of geometric approaches over sense & avoid is that 

the time required to compute, and the complexity of the algorithm are greatly reliant on the algorithm 

implementation. 

The seventh metric is escape trajectories: The escape trajectories offered by various approaches 

can be summarized as follows: sense and avoid offer escape trajectories at run-time and locally, 

conflict resolution offer escape trajectories based on the negotiation protocol, model predictive control 

using hybrid systems for escape trajectories, artificial intelligence offer optimised based escape 

trajectories, and the escape trajectories for optimisation. 

Research shows that computing time, complexity, optimal solution requirements, path planning 

before a mission, and ability to adapt to stationary and dynamic environments are all trade-offs. To 

meet deployment operational requirements, choose the right algorithm or combine different collision 

avoidance methods, such as a two-layered strategy [157]. Detect and avoid techniques, the simplest 

and most resilient strategy with little data requirements and short response times, are safe for dodging 

stationary or moving hazards in close proximity. To avoid getting stranded in a local minimum and 

reach the target without collisions, it must be integrated with a better path planning algorithm. 

Additionally, the sense and avoid approach responds quickly to environmental changes and operates 

independently of external communications. Its fast response times and low data overheads make it a 

reliable and self-sufficient UAV protection system.  
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Table 1.  Performance comparison between UAV devices 

Types of 

UAV 

UAV 

Device 
Speed 

Control & 

Stability 

Overall 

Payload 

UAV 

Safety 

UAV 

Size 
Range 

Battery 

Life 

Multi-

rotor 

drone 

Tri-

copter 
Low High Low None 

Very 

small 

Close-

range 
Medium 

Quad-

copter 
Medium High Low None Mini 

Close-

range 
Medium 

Hexa-

copter 
Medium Medium Medium √ Medium 

Close-

range 
Low 

Octo-

copter 
Medium Medium Medium √ Medium 

Close-

range 
Low 

Single-rotor drone Medium Medium Medium None Medium 
Short-

range 
Medium 

Fixed-wing drone High Low High None Large 
Mid-

range 
High 

Fixed-wing Hybrid 

VTOL 
High Low High None Large 

Mid-

range 
High 

 

Table 2.  Sensor attribute comparison for obstacle detection: short (0-100 m), medium (100 - 1000 m), long 

(> 1000 m)  

Sensor Mode Accuracy 
Weather 

Condition 

Light 

Sensitivity 
Range 

Sensor 

Size 

Processing 

Requirement 

Power 

Required 

LiDAR Active High 
Low 

Dependency 
No Medium Small Low Medium 

Radar μ-

wave 
Active High 

Not 

Dependant 
No Long Large Low High 

Radar 

mm-wave 
Active High Dependant No Long Small Low Medium 

Ultrasonic Active Medium 
Partial 

Dependency 
No Short Small Low Medium 

Thermal 

or IR 
Passive Medium 

High 

Dependency 
No Medium Small High Low 

Camera Passive Medium 
High 

Dependency 
Yes Short Small High Low 

 

Table 3.  Performance Comparison between State-Of-The-Art Collision Avoidance Approaches  

CA 

Approach 
Complexity 

Communication 

Dependence 

Pre-

mission 

Planning 

Robustness 
3D 

Compatibility 

Real-time 

Performance 

Escape 

Trajectories 

Sense & 

Avoid 
Low ꭕ ꭕ √ 3D √ 

Local/Run-

time 
Conflict 

Resolution 
High √ ꭕ √ 2D √ 

Negotiation 

protocol 

Model 
Predictive 

Control 

High √ √ √ 2D √ 
Hybrid 

systems 

Artificial 
Intelligence 

Medium √ ꭕ √ 3D √ Optimised 

Potential 

Field 
Function 

High ꭕ √ √ 2D √ 
Force-field 

based 

Geometric 

Guidance 
High √ √ √ 3D √ 

Protocol 

based 
Optimisation 

Based 
Medium √ √ √ 3D √ Pre-defined 

 

Avoiding flying collisions with LIDAR data to optimize UAV system settings is understudied. 

In this study, optimal collision avoidance parameter sets are automatically adjusted. LiDAR data 

detects obstacles and incursions in Miao et al.'s ALORID approach. This method assists collision 

avoidance controllers [158]. Ponte et al. use LiDAR sensor input parameter and Kalman Filter 
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estimation to monitor obstacles and trespassers, hover, and land the drone [159]. Using LiDAR 

distance measurements alone, an automated system for recognizing and avoiding obstacles has not 

been developed. This could degrade the algorithm, obscuring the UAV's trajectory. Thus, this research 

will focus on improving collision avoidance controllers for real-time intelligent systems. UAV 

collision avoidance controllers with LiDAR sensors could increase autonomous flight and collision 

avoidance. To reduce collisions, a detect and avoid system with sensor fusion optimization needs more 

research. 

8. Future Recommendations 

According to the literature, there are three components that can be enhanced. The hexa-X rotor 

arrangement of the UAV is determined by its payload, which in turn determines the construction of 

the hexa-copter. The UAV payload is essential for ensuring stability, maneuverability, and flight 

endurance [160]. Once the 3D virtual model has been created using SolidWorks, it is necessary to do 

stress analysis using the finite element method. Therefore, it is necessary to analyze the hexa-copter's 

structure using finite elements and analytical load calculations specifically for landing and takeoff 

[161]. It is essential to perform this step in order to accurately determine the weight of the hexa-copter 

without any extra weight, which must not above 3.5 kilograms. 

An additional enhancement that might be used in this study is the integration of sensor fusion, 

specifically utilizing LiDAR, sonar, and radar. The author is not aware of any sensor fusion technique 

that combines these sensors for the purpose of recognizing objects in UAVs. In addition, prior studies 

have predominantly concentrated on integrating multiple sensors, such as LiDAR, vision sensors, 

magnetic and inertial measurement units, visual inertial ranging, and GPS, with UAVs for sensor 

fusion purposes [162]-[166]. Upon realizing that the strengths of one sensor may surpass the 

deficiencies of the others, many sensors were employed collectively. The objective of sensor 

combinations is to surpass the performance of individual sensors by enhancing the proportion of 

desired signal to unwanted noise, reducing uncertainty and ambiguity, and enhancing dependability, 

durability, precision, accuracy, and other attributes. 

Enhancements can be made to a hybrid system designed for an effective collision avoidance 

controller. An optimized data output for new path planning can be achieved by utilizing a hybrid 

system that combines Sense & avoid with an optimization technique. This optimizes the integration 

of sensor fusion data [167]. Sang et al. utilized an enhanced artificial potential field (APF) to develop 

their deterministic approach called multiple sub-target artificial potential field (MTAPF). The course 

was planned using an artificial potential field and an enhanced heuristic A* algorithm. By rotating the 

target locations, Unmanned Surface Vehicles (USVs) are able to avoid becoming stuck in local 

minimums when using the Multi-Target Assignment and Path Finding (MTAPF) algorithm [168]. 

Patel et al. developed a collision-prevention system by combining an Artificial Neural Network with 

a proportional-derivative controller. This controller acquires knowledge about the dynamics of the 

system and corrects faults that occur during high-speed and agile flight, motor malfunctions, and safe 

landings [169]. Hence, there is a requirement for a hybrid system that can effectively prevent collisions 

in diverse situations while simultaneously ensuring optimal real-time speed, scalability, safety, and 

efficiency. 
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