
IJRCS 
International Journal of Robotics and Control Systems 

 
Vol. 4, No. 3, 2024, pp. 1135-1157 

ISSN 2775-2658 

http://pubs2.ascee.org/index.php/ijrcs 

 

 

       http://dx.doi.org/10.31763/ijrcs.v4i3.1474 ijrcs@ascee.org   

  

Optimized Fault Detector Based Pattern Recognition Technique 

to Classify and Localize Electrical Faults in Modern 

Distribution Systems 

Chandra Sekhar Mishra a,1, Ranjan Kumar Jena a,2, Pampa Sinha b,3, Kaushik Paul c,4,  

Mohamed Metwally Mahmoud d,5, Mohamed F. Elnaggar e,f,6,*, Mahmoud M. Hussein d,g,7, 

Noha Mohammed Anwer h,8 

a Odisha University of Technology and Research (Bhubaneswar) formerly Known College of engineering and technology 

  (CET), India 
b School of Electrical Engineering, KIIT Deemed to be University, Bhubaneswar, India 
c Department of Electrical Engineering, BIT Sindri, Dhanbad 828123, India 
d Electrical Engineering Department, Faculty of Energy Engineering, Aswan University, Aswan 81528, Egypt 
e Department of Electrical Engineering, College of Engineering, Prince Sattam Bin Abdulaziz University, Al-Kharj 

  11942, Saudi Arabia 
f Department of Electrical Power and Machines Engineering, Faculty of Engineering, Helwan University, Helwan 11795,  

  Egypt 
g Department of Computer Technology Engineering, Technical College, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq 
h Electrical Power and Machines Engineering Department, High Institute of Engineering and Technology, Luxor, Egypt 
1 chandrasekharmishra1106@gmail.com; 2 ranjankjena@gmail.com; 3 pampa.sinafel@kiit.ac.in;  
4 ushik.ee@bitsindri.ac.in; 5 metwally_m@aswu.edu.eg; 6 mfelnaggar@yahoo.com; 7 mahmoud_hussein@aswu.edu.eg;  
8 nohaanwer69@yahoo.com 

*Corresponding author 

 

1. Introduction  

In modern power distribution systems, the prompt and accurate detection and localization of 

electrical faults are critical for maintaining system reliability and safety. Electrical faults, which can 

be caused by various factors such as equipment failures, weather conditions, or operational errors, 
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pose significant challenges. They can lead to power outages, equipment damage, and safety hazards 

[1]-[4]. Therefore, developing advanced techniques for fault detection and classification is essential 

for efficient power system management. Traditional fault detection methods often struggle with the 

complexities and scale of modern power networks. They may involve significant computational 

overhead and may not provide the desired accuracy or speed in identifying and localizing faults. To 

address these challenges, this research proposes an innovative approach that leverages artificial 

neural networks (ANN) and discrete wavelet transform (DWT) to improve the detection, 

classification, and localization of faults in power distribution systems [5]-[7]. 

Transmission lines are vital components of electrical power systems, connecting generation 

centers to load centers. An electrical fault, a malfunction in wiring or appliances, can lead to power 

outages, damaged electronics, and even pose safety risks to humans, birds, and animals. Rapid 

detection and isolation of such faults are crucial to minimizing disruption [8]-[11]. Several methods 

for fault detection and localization in transmission lines have been explored and reviewed in various 

studies. Traditional methods often involve mathematical and predictive models enabled by 

advancements in computing technology. For instance, an ANN-based defect detector has been 

proposed for fault classification, though it did not address fault location accurately. Hybrid strategies 

combining techniques like support vector machine (SVM), genetic algorithm (GA), and DWT-

extreme learning machine (DWT-ELM) have also been surveyed and compared [12]-[15]. In one 

study, a case using ANN to detect faults in a protective zone reported an accuracy of 78.82%. 

Researchers have also employed mathematical modeling and optimization techniques, such as 

teaching learning based optimization (TLBO) and harmony search (HS), to locate faults in a two-end 

transmission line model. Moreover, nonlinear loads injecting harmonics into the system can distort 

voltage and current waveforms, necessitating techniques to identify harmonic current sources for 

reliable power delivery [16]-[18]. Innovative methods, such as using ANN with directed relay 

systems for smart grid protection, have been proposed. These systems employ either a centralized 

controller receiving data from all protection devices or a zone controller facilitating communication 

between peer protection devices along the line. This approach eliminates the need to reconfigure 

protection settings when grid layouts change [19]. Another study utilized MATLAB to test a 14-bus 

system, using ANN trained with back-propagation to detect and classify faults, achieving a mean 

square error (MSE) within acceptable ranges and high precision  various techniques, including the 

hubbard-stanovich (HS) transform and radial basis function-ANN (RBFANN), have been mentioned 

for FD and localization [20]. Time Frequency Analysis plays a key role in feature extraction, 

calculating standard deviations and energy changes over configurable windows. RBFANNs classify 

faults using energy delta and standard deviation as inputs. Additionally, a combination of DWT and 

back propagation-ANN (BPANN) has been developed to locate faults in underground supply 

networks, utilizing high-frequency fault signal components for precise detection [21]-[23]. 

For fault distance estimation, decision tree regression (DTR) has been employed due to its 

resilience and faster training compared to other techniques like ANNs and SVMs. This method uses 

fault data to estimate fault location, showing robustness against various fault conditions and system 

characteristics. Digital relaying with fast discrete orthogonal S-transform (FDOST) and SVMs has 

been used to accurately locate faults under different conditions, even with noisy signals [24], [25]. 

SVM have also been utilized for fault detection and classification, requiring a database of detail 

coefficients from DWT-decomposed current and voltage signals for model training. The resulting 

models can effectively identify and classify faults along transmission lines. Additionally, 

methodologies involving phasor measurement units (PMUs) and Clark components have been 

developed to enhance fault detection and localization indices, reducing system noise and 

measurement errors [26]-[28]. In power systems, devices like STATCOM are essential for 

maintaining voltage stability and power quality. Techniques involving DWT analyze signals to detect 

faults, particularly in relation to STATCOM's role in reactive power control. Collecting and 

processing data from multiple points in the system helps identify fault conditions accurately, ensuring 

reliable power transmission [29]-[35]. 
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The proposed method divides the power network into optimal zones to manage the extensive 

data efficiently. Within each zone, a fault detector (FD) utilizing niche binary particle swarm 

optimization (NBPSO) is employed. This approach allows for precise measurement of fault-related 

parameters, such as voltage and current phasors, while minimizing costs. The ANN module plays a 

crucial role in identifying the fault area and pinpointing the exact fault location within that area. 

Additionally, the ANN is capable of classifying the specific type of fault, providing valuable 

information for swift corrective actions. For feature extraction, DWT is applied, which effectively 

captures the transient characteristics of faults. Furthermore, a phase locked loop (PLL) is used for 

load angle computation, enhancing the accuracy of the fault detection process. The proposed method 

has been validated using the IEEE-33 bus distribution network is presented in Fig. 1, demonstrating 

its effectiveness and reliability in real-world scenarios. This paper outlines the methodology, 

implementation, and validation of this advanced fault detection technique. The following sections 

will discuss the literature review, methodology, experimental setup, results, and conclusions, 

providing a comprehensive overview of the research and its implications for power distribution 

systems. 

 

Fig. 1. Schematic representation of zones divisions in IEEE 33 bus system 

2. Power System FD and Classification Methodology 

The proposed algorithm is divided into two primary sections: fault zone detection and fault 

classification. The flowchart of this algorithm is depicted in Fig. 2. The process begins with the 

initialization phase, where the power system is divided into zones, and FDs are strategically placed 

within these zones using the NBPSO algorithm. These FDs continuously monitor and record three-

phase voltages, currents, and load angles. DWT is then applied to these recorded measurements to 

extract specific coefficients from the voltage and current waveforms. Additionally, the ANN pattern 

recognition technique is employed to detect and categorize fault zones within the power system [36], 

[37]. A detailed description of the FD and classification procedure is provided below [38]. 

2.1. Selection of Optimal Zones 

Transmission lines are critical for transporting electrical energy over long distances, connecting 

power plants to consumers [39]. In this model of the electrical grid, buses serve as nodes, and power 

cables serve as branches. The proposed approach for fault localization leverages the NBPSO 

algorithm and incorporates network topology information. When a bus's observability is enabled, the 
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controller can take voltage or current readings from the bus and use them as inputs to train an ANN. 

The fault locator is positioned at bus p,p, making it observable. For a bus to be considered observable, 

it and all buses it connects to must meet the observability criteria. The topological FD (TFD) matrix 

for a bus incident is constructed, where node elements are represented as columns and branches as 

rows. The placement of FDs within the network topology-based TFD is determined as follows [40]-

[42]: 

“FD(p,p)=1”; for all buses in the power system                                                            

“FD(p,q)=1”; “If the buses p and q are connect”                                                         

“FD(p,q)=0”; “If the buses p and q are not connected”                                                 

 

Fig. 2. Complete flowchart for the proposed fault identification and classification 
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The flowchart in Fig. 3 shown the approach for the optimal selection of zones and makes the 

system observable. Further, the placement of FD at each zone will be discussed. This flowchart 

illustrates the approach for optimal zone selection, ensuring system observability. The subsequent 

placement of FDs within each zone is then discussed in Table 1. 

 

Fig. 3. Flowchart of the Selection of optimal zones approach 

Table 1. IEEE 33 bus zone protection 

Zone Bus Numbers IEEE 33 BUS 

Zone A 1 , 2 , 3 ,19 , 20 , 21, 22 , 23 , 24 , 25 

Zone B 4,5,26,27,28,29,30,31,32,33. 

Zone C 7,8,9,10,11,12,13,14,15,16,17,18 

 

2.2. FD and Categorization Procedure 

In [43], the authors have formulated a new approach for the harmonic source identification in 

the power system framework that deals with the wavelet transform. The approach has been inspired 

by the active power harmonic analysis based on the analysis of the detail or harmonic active power 

in the wavelet domain [44]. Based on the DWT, the mathematical representation of the active power 

P, can be represented as: 

 
𝑃 =

1

𝑇
∫ 𝑣(𝑡). 𝑖(𝑡)𝑑𝑡

𝑇

0

 (1) 

Here P can be segregated into components which are approximate (Papp) and detail power (Pdetj). 

Thus, P can be represented as: 

 𝑃 = 𝑃𝑎𝑝𝑝 + 𝑃𝑑𝑒𝑡𝑗 (2) 
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where,  

 Papp= C kjC kjo
T

'
,0,

1
  (3) 

 
𝑃𝑑𝑒𝑡𝑗 =

1

𝑇
∑ ∑ 𝑑′𝑗,𝑘 

𝑘𝑗≥𝑗0

𝑑𝑗,𝑘   (4) 

Here represents the, Here in Equations (3), (4), the DWT coefficients related to the current and 

voltages are denoted as Cj0,k, C’jo,k respectively corresponding to the scaling level j0 and the level of 

wavelet decomposition is denoted as j. dj,k, d/
j,k represented in Equation (4) resembles the DWT 

coefficient for current and voltage respectively at kth sample. In Equation (5) and Equation (6), The 

RMS values of the voltage and current signals corresponding to specific frequency band are marked 

as Vj and Ij which resembled the detailed voltage (Vdet) and detailed current (Idet), respectively. 

 
Vdetj=  

 0

'1

jj k
T

d  (5) 

 
Idetj= 

1

√𝑇 √ ∑ ∑ 𝑑

𝑘𝑗≥𝑗0

 (6) 

 C’j0,k=〈𝑣(𝑡), 𝜑𝑗𝑗0,𝑘〉 , d’j0,k=〈𝑣(𝑡),𝜓𝑗𝑗0,𝑘〉 (7) 

 Cj0,k=〈𝑖(𝑡),𝜑𝑗𝑗0,𝑘〉 , dj0,k=〈𝑖(𝑡),𝜓𝑗𝑗0,𝑘〉 (8) 

In Equations (7) and (8), and the scaling function is represented as φj0,k, and 𝝍j,k represents the 

wavelet basis function respectively [43]. Formula for detail active power at level 1 (Pdet1) is given as: 

 
𝑃𝑑𝑒𝑡𝑗 =

1

𝑇
∑ ∑ 𝑑′1,𝑘 

𝑘𝑗≥𝑗0

𝑑1,𝑘 (9) 

In Equation (9), the DWT coefficient for current is represented as d1,k and for voltage is 

represented as d/
1,k corresponding to the 1st decomposition level and kth sample. 

Pdet1 resembles the element energetic electricity at level 1, that is associated to a targeted node 

that determines whether or not area of the source of harmonic pollutants is located on the downstream 

or upstream considering the node because the reference. At a particular factor inside the considered 

device, if the fee of Pdet1 is high-quality, then it signifies that the harmonic energy has been acquired 

from the upstream facet with respect to the point of measurement. similarly, whilst the price of Pdet1 

resembles a negative signal then it's far taken into consideration that the harmonic electricity is 

obtained from the downstream aspect. In case while there may be a couple of harmonic supply are 

present then a conflicting state of affairs arises. In such state of affairs, the identification of the 

stronger harmonic source is done via determining the pollution power (DP) degree of the source. The 

source that is highlighting higher value of DP is handled as the dominant dealer of harmonics. The 

dominant source of harmonic pollution region can be determined deliberating the signs of the element 

electricity for the state of affairs while single nonlinear load or a couple of nonlinear loads are present. 

2.3. Specific Harmonic Source Identification Based on the Selection of Signature Harmonic 

Frequency 

In well known principles, the source's characteristic harmonic information is utilized because 

the fundamental idea of governing the detection of the form of harmonic generating source. Such 

statistics is without problems handy for usually used distribution device loads. The strength digital 

hundreds which can be taken into consideration to be the primary producers of harmonics in power 
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structures framework, normally produce ordinary harmonics. This situation can be almost observed 

in case of a 6-pulse converter that bears sizable quantity of 5th and 7th harmonic additives and each 

eleventh and thirteenth additives of the harmonics are dominant for 6 pulse converters in addition to 

for 12 pulse converters. it's also visible that triple harmonics are present in case of the transformer 

thrilling present day. consequently, it could be located that based on the characterizing harmonics the 

identification of a specific traumatic load can finished. The proposed method, the wavelet analysis 

of the active power signal at detail level 1 has been utilized to search the frequency. The information 

related to the desired harmonic power is achieved based upon the adjustment performed in the 

sampling frequency. In this paper, the optimum sampling frequency can be described as the sampling 

frequency that facilitates the extraction of the information related to the corresponding harmonic 

information at detail level 1. Obviously, the optimum sampling frequency will depend upon the 

frequency of the signal to be extracted and also on the central frequency of the mother wavelet chosen 

which is shown in Table 2. 

Table 2. Comparative analysis at 1st level of decomposition between Pseudo and sampling frequency 

Specific 

Harmonic 

Captured power 

frequency (Hz) 

Sampling 

frequency (Hz) 

3rd 300 877 

5th 500 1461.56 

7th 700 2046.185 

9th 900 2630.8 

11th 1100 3215.43 

13th 1300 3800 

 

2.4. Optimum Sampling Frequency for Finding out the Different Types of Harmonics 

Generating Source 

The frequency information from the coefficient extracted at the jth decomposition level in case 

of the wavelet decomposition can be represented as: 

 
𝐹𝑝𝑠𝑗 =

𝐹𝑐𝐹𝑗

2𝑗  (10) 

where, In Equation (10), the pseudo frequency at jth level is given as Fpsj, Fs resembles the sampling 

frequency and the frequency of mother wavelet i.e. central frequency related to the selected wavelet 

is represented as Fc [23]. The mother wavelet db10 has been used in this study as this has been found 

to be the most suitable mother wavelet for steady state power system distorted waveform analysis 

[45]. Fpsj resembles the frequency band around the frequency Fpsj even it has a single frequency value. 

The computation of the sampling frequency can be done considering the information related to the 

pseudo frequency that have been fetched regarding the signature harmonics of the voltage/current 

signal. The proposed approach portrays the search of the characterizing frequency bands based on 

the decomposition of the power signal for the distribution system loads. The voltage and current have 

50 Hz as the fundamental frequency, and the active power signal exhibits a 100 Hz frequency. 

Accordingly, for the third harmonic the frequency of the active power component is 300 Hz.  Thus, 

the determination of sampling frequency in case of the fundamental active power extraction at the 

level 1 of the discrete wavelet transform can be represented as: 

 
𝐹𝑠 =

2 × 𝐹𝑝𝑠𝑗

0.6842
 𝐻𝑧 (11) 

The pseudo frequency, and the sampling frequency corresponding to each harmonic level has 

been shown in Table 1 for Daubesis 10 (db10) mother wavelet and the decomposition at the first level. 

The frequency band estimation included in a wavelet analysis with specific frequency Fpsj of level j, 

is represented as: 
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𝐹𝑝𝑠𝑗   =  

(𝑚 + 1)𝐹𝑠

2𝑗+1   , 𝑗 = 1, 𝐽 − 1 (12) 

where In Equation (12), Fs is denoted as the sampling frequency and J is the last decomposition level. 

Range of m is denoted as m=0, 1, j-1 and m=0, 1 for DWT [46]. An experiment has been conducted 

for a network energized with a non-sinusoidal voltage source which has all odd harmonics up to 19th 

order in order to further verify the above condition. Because the network's loads are considered to be 

linear, the present. Table 3 shows the proportion of harmonic power computed by Pdet1 at sampling 

frequencies of 877 Hz, 1461 Hz, and 3800 Hz. These frequencies resemble the specific pseudo 

frequencies of 3rd, 5th, and 13th harmonic powers, respectively. At a sampling frequency of 1461 Hz, 

which corresponds to the 5th harmonic power, Pdet1 so it can determine the 5th harmonic power. Pdet1 

calculates 85.26% of 3rd harmonic power, 83.24% of 7th harmonic power, and 20.46% of 9th 

harmonic power at this sampling frequency, with the influence of other harmonic powers minimal. 

Similarly, at 877 Hz sampling frequency, Pdet1 only records 100% of the 3rd harmonic power and 20% 

of the 5th harmonic power. Table 3 also shows the contributions of the harmonic powers on Pdet1 at 

3800 Hz sampling frequency. The above analysis serves as the foundation for the harmonic source 

detection strategy in our suggested method. The main concept deals with the pseudo frequency 

selection that aids in the detection of the source. Subsequently, the sampling frequency must be 

selected so that the extraction of the pseudo frequency component can be done at level 1 of wavelet. 

The characteristic pseudo frequency must be chosen with care in order to encompass the bulk of the 

harmonics created by the harmonic generator and gather their contributions to the extracted 

coefficient for the purpose of detecting the harmonic source. As a result, the sample frequencies must 

be modified based on the defining harmonics of the targeted harmonic generating sources, as various 

harmonic sources may have different characteristics frequencies. 

Table 3. Different values of pdet1 at various sampling frequencies 

Harmonic order Fs =1461 Hz Fs = 877 Hz Fs = 3800 Hz 

Fundamental 1.05 3.9 0.12 

3rd order Harmonic 86.5 100 0.76 

5th order Harmonic 100 19.5 1.96 

7th order Harmonic 86.7 - 5.89 

9th order Harmonic 19.78 - 19.89 

11th order Harmonic - - 83.6 

13th order Harmonic - - 100 

15th order Harmonic - - 82.6 

17th order Harmonic - - 42.5 

19th order Harmonic - - 12.5 

3. Proposed Fault Diagnosis and Detection Method at Each Zone 

The fault condition test signal changes its amplitude and frequency; eventually, the entropy of 

the test signal also changes its value. Entropy also determines the type of fault in the distribution 

system. In the proposed algorithm, phase currents and ground current signals (𝑖𝑎 , 𝑖𝑏 , 𝑖𝑐𝑎𝑛𝑑𝑖𝑔)are the 

test signals for FD. The value of ground current is mathematically represented in Equation (13) [47],  

 𝑖𝑔 = 𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐  (13) 

The proposed method calculates the entropy of each phase current signal before and after the 

fault condition. The flowchart of the proposed method is shown in Fig. 4. 

𝑠𝑢𝑚𝑎, 𝑠𝑢𝑚𝑏, 𝑠𝑢𝑚𝑐𝑎𝑛𝑑𝑠𝑢𝑚𝑔 represents the entropy values of current signals. The maximum and 

minimum values of these sum of entropy values are calculated to compare with threshold values [48]. 

 𝑚𝑎𝑥 1 = 𝑚𝑎𝑥(𝑠𝑢𝑚𝑎, 𝑠𝑢𝑚𝑏, 𝑠𝑢𝑚𝑐𝑎𝑛𝑑𝑠𝑢𝑚𝑔) (14) 
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 𝑚𝑎𝑥 2 = 𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒(𝑚𝑎𝑥 1) (15) 

 𝑚𝑖𝑛 1 = 𝑚𝑖𝑛( 𝑠𝑢𝑚𝑎, 𝑠𝑢𝑚𝑏, 𝑠𝑢𝑚𝑐𝑎𝑛𝑑𝑠𝑢𝑚𝑔) (16) 

The threshold values TH1, TH2 and TH3 sets according to the system for FD and classification. 

These threshold values compare min and max values and set rules for fault type classification. The 

following rules are [48]: 

No-Fault Condition: 
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔
𝑚𝑎𝑥 2

𝑚𝑖𝑛

    

L-L Fault: 
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔
𝑚𝑎𝑥 2

𝑚𝑖𝑛

 

L-L-L-G Fault: 
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔

 

L-G Fault: 
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔

 

L-L-G Fault: 
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔
𝑚𝑖𝑛

𝑠𝑢𝑚𝑔

 

Niching technique has evolved by incorporating the interaction of competitive behaviour of 

animals and other species in a situation where the possessions are partial. Where Niches is identified 

as partitions of situation (or environment), while species can be interpreted as the division of 

population contending in the situation. Niching systems is categorized by two diverse methods: 

“parallel and sequential niching” [49]. “Parallel niching” technique identifies and maintains various 

“niches” in population simultaneously. “Sequential niching technique implements multiple solutions 

by iteratively applying niching to a problem space, while marking a potential solution at each 

iteration to ensure that search efforts are not duplicated”. 

“Niching algorithms” present actual substitutes to unimodal optimization techniques in multi 

model domains. Difficulties with multi model solutions spaces, such as resolving equations of the 

systems and collaborative neural networks, can be beneficial rather than optimization approaches, 

which explicitly undertake more than a single solution, and lead to more efficient optimization. 

NBPSO is popular with its multidimensional search and is capable of developing a range of system 

equation solutions. It uses a “local search algorithm” to build “sub-swarms” to find the finest Gbest 

position in the “swarm”. The procedure overlays the “initial partial swarm” with the harming 

distance. The objective function is distinct by fault detector. The purpose of “NBPSO algorithm” is 

to obtain best solution redundancy and fulfil the constraints to obtain observability of distribution 

system. 

Let the FD “placement vector” "S" as defined by: 

S(p)=If FD “placed at bus” p; otherwise  

The “NBPSO problem is formulated as follows” 

 “𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒” 𝑊1𝑀1 + 𝑊2𝑀2 (17) 

Constraints subjected to TFDST≥ U “Where TFD is binary incidence matrix of n bus system 

and given as unity vector U= (n×1). W1  and W2  are weights to compare magnitudes M1 and M2.” 

 “𝑀1 = 𝑆𝑇𝑠 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝐷’𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚” (18) 

 “𝑀2 =  ((𝑁 − 𝑇𝐹𝐷𝑆)𝑇 ∗ (𝑁 − 𝑇𝐹𝐷𝑆))” (19) 
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Fig. 4. Flowchart of proposed fault diagnosis method 

where N represents redundancy matrix of size (n×1), the elements are in the N matrix has set to 3 if 

the redundancy level of the system is 2. TFD S is given by the observability of the bus done by the 

placement of FD. (N-TFDS) gives the variance of the observed and anticipated number of a bus 

observed. Therefore, by the FD placement in the system the function M2 maximizes the redundancy. 

This algorithm has attained the convergence and found the output in the function of fault detector 

at each zone. Further DWT will be discussed to obtain the approximate coefficient. The flowchart is 

explained in Fig. 5. 

4. ANN for Pattern Recognition Technique 

ANN is a computational model, specifically based on structures and features of biological neural 

networks. An ANN work with a large nonlinear statistical data that can build a complex relationship 

between inputs and outputs, makes it’s robust in nature, because of its high accuracy in prediction 

where the output is very close to the actual value. Its accuracy of prediction made the ANN to be 

utilized in various applications such as aerospace, speech telecommunications, protection systems 

etc. [50]. The training process of ANN involves training of the neurons to update set of weights for 

mapping the pattern of input to outputs. An ANN structure has an input layer, hidden layer (there can 

be greater than 1) and the output layer. The hidden layer can extract some of the essential patterns 

from the inputs and passes it onto the subsequent layer to see. It makes the network faster and efficient 

[48]. 

4.1. ANN-FD Module 

By employing the pattern-recognition capabilities of ANNs, we can more accurately identify 

transient and fault states in the power grid. It can also tell the difference between a single-phase and 
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three-phase power failure. The three-phase voltage and current root-mean-square values, feature 

extraction from discrete wavelet transform at db6 frequency, and load angle computed from phase-

locked loop are among the nine inputs into the ANN module under consideration. Table 4 displays 

the basic layout of an ANN used for defect identification. 

 

Fig. 5. Flowchart of NBPSO method 

Table 4. ANN configuration network for zone detection 

No. of Inputs No. of Hidden Layers No. of Outputs ANN Model 

9 

(“VR, VY, VB,IR, IY, IB,Vco, Ico , ø”) 
10 

No. of zones in the 

distribution system 

Two-layer feed forward neural 

network with sigmoid hidden 

and softmax output neurons 

 

The output of the ANN module 1 intended to specify which fault occurrence zone. This module 

has developed to provide the output in  the case of fault occurrence in the distribution system. The 

outputs have characterized by the binary coding of zone 1-4 to the correct input pattern [49]. Table 

5 has represented the way of binary coding with the logic (1) and logic (0). The binary coding has 

assigned with each fault occurred zone as logic (1) or if not with logic (0). By using this approach, 

the ANN module 1 has provided training in accuracy for classifying the correct fault zone. 
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Table 5. Binary outputs coding of the ANN module 1 

Fault occurrence zone Result 1 Result 2 Result 3 Result 4 

Zone no.1 1 0 0 0 

Zone no. 2 0 1 0 0 

Zone no. 3 0 0 1 0 

Zone no. 4 0 0 0 1 

 

4.2. ANN Fault Classification Module 

The ANN module 2 is utilized for fault classification and uses the 9 inputs. The ANN utilizes 

back propagation algorithm with 10 hidden layers shown in Table 6. The output class is contained of 

five outputs as power system short circuit faults “L-G, L-L, L-L-L, L-L-G and L-L-L-G”. 

Table 6. 10 hidden layers of ANN 

No. of Inputs 
No. of Hidden 

Layers 
No. of Outputs ANN Model 

9 

(“VR, VY, VB,IR, IY, 

IB,Vco, Ico , ø”) 

10 

5 

(“L-G, L-L, L-L-L, L-

L-G & L-L-L-G”) 

The network is a two-

layer feedforward neural 

network with sigmoid 

hidden and softmax 

output neurons. 

 

The ANN module 2 outputs indicate the fault classification, which is linked to the correct input 

pattern. The outputs are characterized as logic (1) or (0) as in the form of binary coding given in 

Table 7. The output indicates either logic (1) if particular fault has occurred or it gives logic (0). In 

this way, the ANN module 2 has carried out the correct logic on each fault classification. 

Table 7. Binary coding outputs of ANN module 2 

Fault occurrence zone Output 1 Output 2 Output 3 Output 4 Output 5 

L-G 1 0 0 0 0 

L-L 0 1 0 0 0 

L-L-L 0 0 1 0 0 

L-L-G 0 0 0 1 0 

L-L-L-G 0 0 0 0 1 

5. Results and Discussion 

5.1. Investigations on the Studied System 

In this section, IEEE 33 bus system is examined with the recommended technique. The proposed 

technique is studied in the context of the IEEE 33 bus system. The characteristics of the system are 

based on a 100 MVA rating and a 25 kV voltage. Fig. 1 depicts the updated IEEE 33 bus system with 

zoned division and FD location. Table 8 is shown for IEEE 33 distribution system simulation 

variables data set. 

Table 8. IEEE 33 distribution system simulation variables data set 

Variable parameter Configurations 

Fault Type (LG, LL, LLL, LLG & LLLG) 

Fault resistance 0.01Ω- 300Ω 

Fault location(km) 
(50,100,150,200,250,300,350,400) 

Zone1- Zone 4 

Sampling Frequency 1200 Hz 

Distribution system Radial 
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The Proposed methodology works as following steps: 

• The observability condition has checked in the system divided into 4 zones. The selection of 

buses by NBPSO from 2, 4, 13 and 26 in the respective zones (1- 4). 

• The rms values of the phase voltages and phase currents, load angle from phase voltages have 

been collected from the fault detectors respectively under various fault occurrences. 

• The voltage and current coefficients have extracted from DWT feature extraction at dB6 

sampling frequency 1200 Hz. 

• The input samples dimensions in 3,411 have been collected from each line in the IEEE  33 bus 

system.  The FD provides 4 outputs of 1516 samples for a zone selection from zone 1-zone 4 

are shown in Fig. 6. 

• A two-layer feedforward network has been employed with a Line fault hidden layer of sigmoid 

transfer function, and the output layer take in softmax transfer function. The Preferred hidden 

neuron is set to 10. The number of target vector i.e. 4 has fault decided the number of output 

neurons. 

• The ANN has used back propagation algorithm with 9 inputs, 10 hidden layers and 5 outputs as 

shown in Fig. 7 and Fig. 8. The ANN has been trained with supervised learning by theadjustment    

of    weights    of    different    fault    conditions occurrence in the IEEE 33 distribution network. 

 

Fig. 6. Detecting an LG defect by DWT analysis of voltage 

5.2. Performance Evaluation & Testing 

The effectiveness of the proposed methodology has been evaluated for the zone detection and 

fault classification; the accuracies are calculated from the confusion matrix of the ANN modules 1& 
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2. The confusion matrix summarizes the ANN performance in classification between inputs and 

targets [51]. The features of the confusion matrix include training, validation, testing, and all 

confusion matrixes. The confusion matrix has shown be evidence for the number of mapped in green 

squares and unmapped samples in red squares to each classification. The individual classification 

percentage and the overall classification of each confusion matrix also have been specified in lower 

right blue squares [50]. The training of ANN has accomplished by which the result of the small least 

means square error as shown in the confusion matrix for fault classification and zone detection shown 

in Fig. 9 and Fig. 10. The training, validation, test and all confusion matrices have been generated 

from ANN module 1. Case study on IEEE 33 bus system with L-G fault occurrence at zone 2 shown 

in Fig. 11. 

 

Fig. 7. ANN Module 1 configuration network for fault detection 

 

Fig. 8. ANN Mdoule 2 configuration network for fault classification 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

1149 
Vol. 4, No. 3, 2024, pp. 1135-1157 

  

 

Chandra Sekhar Mishra (Optimized Fault Detector Based Pattern Recognition Technique to Classify and Localize 

Electrical Faults in Modern Distribution Systems) 

 

 

Fig. 9. Confusion matrix of ANN module 1 for FD 

 

Fig. 10. Confusion matrix of ANN module 1 for zone detection 
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Fig. 11. Case study on IEEE 33 bus system with L-G fault occurrence at zone 2 

5.3. Case study: L-G Short Circuit Fault Occurred Between Bus Number 5 

The IEEE 33 bus balanced radial distribution test system at the suggested case site is given an 

L-G fault. The L-G fault is applied at a time interval ranging from 0.5 seconds to 0.7 seconds at the 

suggested site, and the required simulation work is carried out in MATLAB Simulink. The fault 

voltage signal has been logged, and it may be found shown in Fig. 12 (a).  The fault current signal is 

shown in Fig. 12 (b). Smart meters positioned at bus numbers 5, 26, and 30 are responsible for the 

collection of the data for the failure signal. The non-fault signals are gathered at the other 

measurement devices that are still operational. This signal processing approach, which is based on 

the wavelet analysis decomposition, is used to deconstruct these signals. To solve this categorization 

issue, we looked at a total of 400 different samples. The quantity of these gathered data is rather 

substantial. Within this massive data set, only a select few data provide a more accurate interpretation 

of the signal. The process of selecting relevant features from a massive amount of data is referred to 

as feature detection. All the data were compared here with the actual value and the predicted value, 

and the results showed that the responses were more reliant on the data that had a high chi-square 

value. 

ANNs have significant practical importance in classifying faults in various fields, including 

power systems. ANNs are adept at identifying complex patterns and relationships within data. In 

fault classification, ANNs can learn from historical fault data and their corresponding features to 

recognize patterns associated with different fault types. This enables accurate identification and 

classification of faults based on the input data. ANNs can adapt and learn from new data, making 

them suitable for fault classification in dynamic and evolving systems. As the system's behaviour 

changes over time due to different conditions and loads, ANNs can continuously update their 

classification capabilities. ANNs can automatically extract relevant features from raw data, reducing 

the need for manual feature engineering. This is particularly valuable in fault classification, where 

identifying relevant features can be challenging due to the complexity of the data. Fault patterns often 

involve nonlinear relationships between variables. ANNs are capable of modelling these nonlinear 
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relationships, making them well-suited for capturing intricate fault patterns that might not be easily 

captured by traditional linear methods. 

  
(a) (b) 

Fig. 12. Voltage and current profile during LG fault 

Trained ANNs can generalize their knowledge to classify unseen data accurately. This means 

that once an ANN has been trained on a sufficiently diverse dataset, it can classify new fault instances 

that it hasn't encountered during training. Fault Localization: ANNs can also be used for fault 

localization, helping to pinpoint the exact location of a fault within a system based on the observed 

data patterns. This can be crucial for efficient maintenance and quick restoration of servicesWhile 

some domain knowledge is necessary for designing and training ANN models, they can still achieve 

accurate fault classification without an exhaustive understanding of the underlying physical 

processes. This can be advantageous in cases where domain knowledge is limited or hard to acquire. 

ANNs can be designed to provide real-time or near-real-time fault classification, allowing for rapid 

response and mitigation of faults. This is especially important in critical systems like power grids, 

where timely actions can prevent widespread disruptions. 

ANNs can handle data from various sources, including sensor readings, SCADA systems, and 

historical databases. This flexibility enables them to make use of diverse data streams for accurate 

fault classification. Reduced Human Intervention: Once trained, ANNs can operate autonomously, 

reducing the need for continuous human intervention in fault detection and classification processes. 

This can lead to improved efficiency and cost savings. These capabilities contribute to more reliable 

and efficient operation of complex systems, such as power grids, industrial processes, and 

communication networks. Table 9 shows that out of a total of 140 fault signal data, 137 of those data 

signals are accurately predicted and identified as belonging to Zone-B with an accuracy of 97.85 

percent. It may be said that the categorization issue has an accuracy of 97.75 percent overall. 

Table 9. Confusion matrix for case 1 

N=400 
Predicted 

CA (%) 
 BUS 5 BUS 26 BUS 30 

Actual 

BUS 5 129 1 2 

 BUS 26 1 137 2 

BUS 30 1 2 125 

    97.75% 

 

5.4. Evaluation of the Proposed Method Using RTDS 

For the experimental verification of the proposed method in the hardware platform, the authors 

have fed the IEEE 33 bus distribution system in the RTDS system. The considered model is simulated 

in PSim and the simulation has been carried out by utilizing Opal-RT RTS OP5600 chassis with RT 

lab form of 11.X. Voltage signals consequently produced by Opal-RT real-time test system, have 

been sent to IO cards ML605 to gather the required information. The assessment of the proposed 
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strategy for location of HIF incorporates: i) impact of sampling rates; ii) impact of random noise iii) 

evaluation under DGs. 

Sampling rates are very important for the measurement of voltage/ current signals utilized HIF 

detection technique.  The digitization of voltage and current signals uses sampling rates in such a 

way that the signature of the signal should be intact. To assess the impact of the sampling rate for 

detecting HIF, four different sampling frequencies are considered i.e., 4 kHz, 10 kHz, 51.2 kHz, and 

89.6 kHz have been chosen. The proposed strategy precisely identifies HIF at all sampling 

frequencies. The proposed methodology can detect HIF accurately at all sampling frequencies. But 

here particular to the industrial sampling frequency has been used i.e., 12.5 kHz for this work. The 

hardware model of the proposed scheme structure was presented in [5]. Fault in IEEE 33 Radial 

Distribution Under Noisy conditionThe detection of the HIF zone has been subjected to a noisy 

environment in hardware platform. Proper analysis of the noise impact is performed to evaluate the 

effectiveness of the projected approach. The signal-to-noise ratio (SNR) technically denotes noise, 

which is given by Equation (20). 

 
𝑆𝑁𝑅𝑑𝑏 = 20 𝑙𝑜𝑔10 (

𝑋𝑠𝑖𝑔𝑛𝑎𝑙

𝑋𝑁𝑜𝑖𝑠𝑒
) (20) 

Here the problem occurred between buses 5 and 16 in the presence of noise levels of 35dB, 25dB, 

and 10dB. TQWT signal processing technology is used to evaluate the fault signal, and fault data 

sets are gathered at smart meters positioned on buses 14 and 17. Levels 4 and 5 detail coefficients 

derived from the fault signal. The non-fault data sets are obtained from the smart meters located 

throughout the test system. The arc voltage at various noisy conditions is shown in Fig. 13 (a). In 

Fig. 13 (b), Kurtogram of noisy (10dB) has been shown where up to 13th order harmonics are visible. 

Here 260 fault signals are given to the classification task. In 25 dB SNR noisy condition, out of 260 

fault signals, 250 signals are categorized as zone 3 as its fault zone, with a classification accuracy of 

99.24 %. The confusion matrix under 25 dB SNR noisy condition is shown in Table 10.  In 15 dB 

SNR noisy condition, out of 260 fault signals, 258 signals are categorized as zone 3 as its fault zone 

with a classification accuracy of 99.23 %. The confusion matrix of case 3 under 10 dB SNR noisy 

condition is shown in Table 11. In Table 12, the proposed method outperformed all the existed 

methods in the literature, even though Tellegen's theorem and SWT+ANN have 100 % accuracy. 

They are limited to FD and no noise condition is considered. 

  
(a) (b) 

Fig. 13. (a) Arc Voltage at various noisy conditions (10 dB), (b) Arc Kourtogram of Voltage at various noisy 

conditions (10 dB) 

Table 10. Confusion matrix Under 25 dB SNR 

 
Predicted 

Precision Class index returned by classifier 
 Zone 1 Zone2 Zone3 

Actual 

Zone1 134 1 0 0.9925 0 

Zone2 0 134 1 0.9925 0 

Zone3 1 1 258 0.9923 3 
    CA=97.24 %  
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Table 11. Confusion matrix under 10 dB SNR 

 
Predicted 

Precision Class index returned by classifier 
 Zone 1 Zone2 Zone3 

Actual 

Zone1 134 1 0 0.9924 0 

Zone2 1 134 0 0.9924 0 

Zone3 1 1 258 0.9923 3 

    CA=98.23%  

 

Table 12. Performance comparsion of the proposed method with previously published works 

Method Detection Network Noise (dB) 
Accuracy 

(%) 

WASVD+ k-NN [proposed 
methodology] 

FD, classification and 
location 

Radial, Meshed, with DG 
and Real Time 

35dB 
25dB 10dB 

99.08 

Tellegen’s theorem [52] 
Detection and 

classification 
IEEE13 & 34 

Not  

considered 
98.5 

Edge computing [53] FD Radial 
Not 

considered 
- 

WT+SVM [54] FD Radial 
Not 

considered 
97.37 

WT+kNN [55] FD Radial 
Noise 

considered 
99.25 

WT+DT [56] FD Radial 
Not 

considered 
99.25 

SWT +ANN [49] Fault location Radial 
Not 

considered 
100 

PSO+ANN [57] FD Real time test feeder 
Not 

considered 
95.50 

Sliding mode observer [51] FD and classification 
parallel multi-cell 

converter 
Noise 

considered 
- 

6. Conclusion 

For fault and zone classification in large power networks, an ANN built on the DWT has been 

presented. The network is divided into zones to make the entire power system observable and 

valuable, reduce computational strain, and save costs. NBPSO is a strategy for deciding the optimal 

placement of fault detectors in each zone. The ANN module is designed to pinpoint both the fault 

zone and the exact location within it. Additionally, the ANN is responsible for categorizing the types 

of faults that occur.In practical application, this method demonstrated its effectiveness by identifying 

a fault 100 kilometers away from fault detector 4 in zone 2. An L-G fault classification was achieved 

using data from the second fault detector. The accurate detection and categorization of the fault were 

made possible by the meticulous placement of fault locators, guided by NBPSO. The integration of 

ANN and DWT enhances the ability to detect and classify faults by providing detailed signal analysis. 

This combination allows for the recognition of patterns associated with different types of faults, 

making the system highly reliable. Dividing the network into zones not only makes the system easier 

to monitor but also reduces the computational load by processing data in smaller sections.The 

optimized placement of FDs ensures maximum coverage and efficiency in fault detection. By 

accurately pinpointing the fault zone and location, the system facilitates quick and effective responses 

to any issues. This method significantly improves the reliability and stability of the power network, 

ensuring a consistent and uninterrupted power supply. Through the use of advanced algorithms and 

precise fault locator placement, the proposed method offers a robust solution for FD and classification 

in large power networks. 
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