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1. Introduction 

Artificial intelligence (AI) has significantly progressed over the past decade, as it is one of the 

most common techniques used in solving complicated problems [1]-[4]. Machine learning (ML) is 

one of the most prevalent branches of AI and has extensive applications across numerous fields [5], 

[6]; it learns from examples or data provided and then is used for predicting new cases [7]. The use of 

ML algorithms includes many areas, such as automation, robot recognition patterns, prediction, 

healthcare, energy, and manufacturing [8], [9], and the prediction of the performance and emissions 

of IC engines [10]. There are various ML algorithms used for prediction purposes, such as SVMs, 

ANNs, kernels and nearest neighbors (k-NNs), and deep learning (DL) [11], [12]. In the field of IC 
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 Currently, artificial neural networks (ANNs) and support vector machines 

(SVMs) are the most common applications of machine learning 

approaches.  In this study, a comparative study of ANN and SVM is 

presented to evaluate the performance of each model in predicting the brake 

power (BP) of GX35-OHC 4-stroke, air-cooled, single cylinder gasoline 

engine with E15 (15% ethanol + 85% gasoline) fuel. Two models are 

compared based on experimental dataset that has single output (BP) and 

five inputs, engine speed (S), engine torque (T), intake air temperature 

(Tair), intake air flow (Qair), and fuel consumption (ṁ). The samples were 

split into three sets: Training set (70%), Validation set (15%), and the Test 

set (15%) based on 60 samples. The results are compared through different 

graphs such as target vs actual values, regression plots, histograms of 

prediction errors, residual plots, learning curves, and error distributions. 

The results showed that SVM model is indicated to have lower RMSE 

(0.0044) and higher EVS (0.9953), while ANN is shown to have lower 

value of MAPE (1.51%). These results have significant implications for the 

use of ANN and SVM models in real-world applications that need gradual 

comprehensibility and model generalization. In addition, work done with 

the models outlined above should try and test them in other engines and 

operating conditions to demonstrate the model’s and performance. 
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engines, ANN and SVM algorithms are commonly used for predicting engine performance and 

emissions [13]-[15]. 

Artificial neural networks are among the most common techniques used in the prediction of ICE 

performance [16]-[18]. They are considered the core of DL algorithms. They consist of three layers, 

an input layer, one or more hidden layers, and an output layer [19], [20]. They draw inspiration from 

the workings of biological neurons in the nervous system, which consists of numerous interconnected 

neurons that function together. This makes ANNs useful for solving complex, highly nonlinear, and 

massively parallel problems. The layers consist of neurons that are connected from one layer to 

another through various weights. This architecture, which features many neurons arranged in different 

layers, can be trained or configured to carry out specific tasks by carefully adjusting its structure, 

biases, and connection weights [21], [22]. These models have been used to predict engine parameters 

such as torque, combustion chamber pressure, exhaust gas physical properties, and vibration. 

Additionally, ANNs have been employed for fault detection, misfire diagnosis, and combustion timing 

control in IC engines [23]-[26]. ANNs are more effective than chemical kinetic models and CFD 

because they can provide accurate predictions in less time and with fewer resource requirements [24], 

[27]. Furthermore, ANNs are used to predict the performance, emission, and combustion 

characteristics of IC engines operating on alternative fuels such as biodiesel and ethanol-diesel blends 

[28], [29]. The effectiveness of ANN models in predicting engine parameters has been demonstrated, 

with RMSEs in the range of 0.4-1.8% for engine performance prediction [30]. The support vector 

machine (SVM) is considered a strong mathematical tool used for classification, regression, and 

function estimation. It has also been applied in modelling machining operations. In SVMs, different 

types of kernel functions play an important role in training parameters [31], [32]. These include linear, 

polynomial, radial basis function (RBF), sigmoid, and Gaussian kernel functions [31], [33]. This 

technique is a supervised, nonparametric method in statistical learning that is known for its strong 

balance between accurately predicting outcomes and generalizing these models to new, unseen data. 

The strengths of SVM models lie in their ability to manage spaces with many variables and to 

effectively handle patterns with noise and varied distributions of properties such as those found in soil 

[34]. The SVM model is a powerful algorithm for performance and emissions prediction because it 

provides high accuracy [35]. Additionally, the single-Wiebe function has been shown to be useful in 

engine research practice, particularly when a simple combustion model with high computational 

efficiency is required as an input into more complex models [36]. SVMs have been used in the 

prediction of NOx emissions and brake mean effective pressure in diesel engines and have achieved 

high-performance results [37], [38]. SVMs have also been applied in the prediction of ICE output 

power. This demonstrated that SVMs exhibit considerable performance in predicting engine 

performance and reducing emissions [39], [40].  

There is a comparative study of SVM and ANN in IC engines in the evaluation of machine 

learning performance in predicting various parameters. SVMs can drive decision functions and have 

been applied in diverse fields, such as challenges associated with ICE performance optimization, 

control and fault diagnosis in small piston engines [41]-[43]. Both SVMs and ANNs have been used 

in the ICE approach for various prediction purposes, such as engine performance and emissions [44]-

[46]. The use of SVM and ANN algorithms in IC engines for various purposes, such as performance 

prediction, fault detection, and emission analysis, is very common. For example, an ANN is used in a 

diesel engine using waste cooking biodiesel fuel to successfully predict BP, torque, SFC, and exhaust 

emissions [47]. The choice between SVMs and ANNs in the application of IC engines depends on the 

specific task and the nature of the data. For example, the predictive power of SVM algorithms was 

compared with that of traditional ANN models, and it was shown that for a limited amount of 

experimental data, SVM has better performance in finding the global optimum solution than does 

ANN [38], [48]. Chowdhury [49], compared the accuracy and reliability of various ML and DL 

models, including random forest (RF), SVM, and ANN. The analysis of the performance of different 

algorithms, namely, ANN, RF, and SVM, showed that ANN had the highest overall accuracy and 

kappa coefficient compared with the other two algorithms. According to the study, the SVM models 

are ideal for handling heterogeneous and homogeneous land feature type data, while in noisy data 
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where the target classes tend to overlap, the model has low performance. On the other hand, ANN 

models yielded higher accuracy in the classification of urban LULC because of the capacity to analyse 

noise and generalize relationships. Also, Kurani et al. [50], showed that ANN and SVM models are 

more suitable for application in stock prediction. ANN models, due to their ability to handle missing 

data points, have enhanced prediction efficiency through other ANN models, such as ANN-MLP and 

GARCH-MLP, along with backpropagation and multilayer feed-forward efficiency. Algorithms such 

as the simple boundary SVM have also provided better accuracy rates between 60% and 70% and can 

be combined with other algorithms such as the random forest algorithm and genetic algorithms. 

Almansour et al. [51], used ANNs and SVMs to classify patients into diseased and disease-free groups, 

and the data used consisted of 400 patients with 24 diagnostic factors. The missing attribute values 

were estimated by the average of the respective attributes; the optimal parameters of the ANN and 

SVM were set up by using cross-validation and several trials. An analysis of the findings of this study 

revealed that the ANN achieved an accuracy of 99%. 75% show that the proposed approach 

outperforms the other classification algorithms, including SVM, which had an accuracy of 97.75%. 

Therefore, more research concerning ANNs is needed for early CKD prediction. Li et al. [52], 

explored the application of support vector machine (SVM) and artificial neural network (ANN) 

methods and compared their effectiveness in assessing the vulnerability of urban buried gas pipeline 

networks. SVM demonstrated better performance, with a mean squared error (MSE) of 2.74E-4, 

compared to ANN’s MSE of 1.92E-2. The SVM model achieved a symmetric mean absolute 

percentage error (SMAPE) of 0.79%, outperforming the ANN model, which had a SMAPE of 8.64%. 

Sharma et al. [53], predicted the mutagenicity of compounds and prevented costly drug failures during 

late development or clinical trials using SVM, ANN, and Bayesian classifiers. The classifiers were 

trained and tested on a dataset comprising compounds with known mutagenic properties utilizing 

seventeen descriptors. The SVM classifier with an RBF kernel achieved the highest overall prediction 

accuracy of 71.73% when the ANN-based classifier showed a lower accuracy of 59.72%, while the 

Bayesian classifier achieved an accuracy of 66.61%. 

According to previous studies, both ANNs and SVMs are used in IC engines for the prediction 

of performance and emissions. However, it is necessary to investigate the application of both SVMs 

and ANNs in the context of IC engines. In this study, both the ANN and SVM models for predicting 

the BP of a GX35-OHC 4-stroke, air-cooled, single-cylinder gasoline engine using E15 fuel is 

conducted. The assumptions are that both models, SVM and ANN, will have the ability to estimate 

the engine performance; however, SVM is accurate if the sample size is significantly smaller, and 

ANN might perform better if the relationships in the data are nonlinear. In additions, this study 

analyses the performance of the forecasting model, ANN, and SVM based on parameters such as the 

RMSE, EVS, and MAPE; the advantages and disadvantages of each model are specified by 

performing detailed comparisons, such as comparisons of target vs. actual values, regression plots, 

histograms with prediction errors, residual plots, learning curves, and error distributions; and the 

limitations of these models and the ways in which they can be applied in practice as well as the need 

to establish model interpretability and extrapolation are discussed. 

2. Method 

2.1. Experimental Setup 

The experiment is performed on a GX35-OHC 4-stroke, air-cooled, single-cylinder gasoline 

engine with the specifications shown in Table 1 and shown in Fig. 1, which describes all the 

components used in the study. The engine is matched with an HM-365 dynamometer to measure BP 

and fixed on a CT-159 unit equipped with various measurement devices, including temperature and 

flow sensors. The CT-159 unit includes an air tank equipped with an intake air temperature sensor and 

an air flowmeter. The input parameters for the two models include engine speed (measured by an 

optical sensor), engine torque (measured by a force sensor), intake air temperature (measured by the 

intake air temperature sensor), intake air flow (measured by the air flowmeter), and fuel consumption 

(measured by an electronic pressure sensor). 
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2.1.1. Experimental Procedure and Measurements 

The procedures of the experiment for both the ANN and SVM (shown in Fig. 2) began with 

passing the air through an air blower that pushes fresh air into the connecting pipe where air flows 

through a flow control valve for airflow adjustment and passes through the air heater to increase the 

inlet air temperature. The air then passes through a filter and a flowmeter, which measures air 

consumption in litres per minute. This air is then directed through the carburetor, where it is mixed 

with a measured amount of fuel (E15) before entering the combustion chamber. Concurrently, there 

is a measurable decrease in the fuel level within the fuel measurement tube. This fuel consumption is 

either observed directly from the tube or calculated via a connected PC. The engine's operational 

parameters, such as rotational speed and brake torque, are monitored by an electronic dynamometer 

linked to the engine via a v-belt. This setup helps in calculating the required BP for the engine. The 

experimental results, which include BP (derived from engine speed and brake torque), are displayed 

on the PC due to the five input parameters. 

 
𝑋̅ =

∑ 𝑋𝑚

𝑛
 (1) 

Table 1.  Engine specifications used in experiment 

Engine Type 4-stroke single cylinder air cooled OHC petrol engine 

Bore X Stroke (mm) 39 x 30 mm 

Compression ratio 8.0: 1 

Ignition System Transistorized 

Net Power 1.0 kW (1.3 HP) / 7000 rpm 

Oil Capacity 0.1 Liter 

Starting System Recoil 

Displacement 35.8 cm3 

Fuel cons. at cont. rated power 0.71 L/h - 7000 rpm 

Max. net torque 1.6 Nm/ 5500 rpm 

Idle speed 2800RPM 

Lubrication Oil mist 

Carburetor Ruixing Brand Carburetor 

 

 

Fig. 1. Experimental installation cycle for ANN and SVM results 

2.1.2. General Settings for Both ANN and SVM Algorithms 

For instance, measurement errors associated with load, speed and temperature can introduce bias 

in the desired results. For example, changes in the load that is applied through the dynamometer or 
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changes in the speed of the engine will interfere with the precise calculation of BP. Multiple 

measurements are conducted to determine the "n" number of experimental parameters. This collection 

of measurements is used to estimate the essential experimental outcome. Thus, eq (1) can be used to 

determine the mean of the amount measured in the studies [54]. Xm is the measured value, and n is 

the number of measurements. The formula for the standard deviation (SD) is given in Equ. (2), and 

the uncertainty (U) can be calculated by Equ. (3) As indicated in Table 2 [55], [56]. These uncertainties 

may lead to variations in the experimental results and the predictions of the ANN and SVM models. 

For instance, if the size and speed of the load differ significantly, it results in deviations in BP 

calculations and, therefore, in the model’s performance measurement. 

 

Fig. 2. Flowchart of experimental procedure 

Table 2.  Uncertainty measurements 

Measurement Uncertainties 
Load ± 0.01 N 

Speed ± 10 rpm 

Temperature ± 1°C 

BP ±1.60 

 

 

𝑆𝐷 = √
∑ (𝑋𝑚 − 𝑋̅)2𝑛

𝑚=1

(𝑛 − 1)
   (2) 

 
𝑈 =

𝑆𝐷

√𝑛
 (3) 

For applying the ANN and SVM models, the input data included the engine speed, engine torque, 

air temperature, air flow, and fuel consumption. The output parameter is BP. The samples used in both 

models are 60 samples with 70% training, 15% validation and 15% validation; this distribution is 

commonly used in various previous studies [50], [57], [58]. Methodological concerns that explain 

why 60 samples are adequate for capturing the sampling distribution of the statistic and handling the 

noise that tends to affect the training of models. First, the selection of features was based on prior 

knowledge of the domain, and the characteristics that most affect the engine parameters were selected. 

These were the engine speed, engine torque, intake air temperature, intake air flow and fuel 

consumption rates, which were tabulated and compared. Correlation analysis was performed to 

identify and remove highly correlated features, preventing multicollinearity. The samples were 

normalized to a range of 0.1 to 0.9 using min–max scaling to ensure that all features contributed 

equally to the model's decision-making process. To indicate the performance of the ANN and SVM 
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models, we employed several metrics: RMSE, EVS, and MAPE. All of these factors define different 

aspects of the model and help to view the results from different perspectives. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
 (4) 

 
𝐸𝑉𝑆 = 1 −

𝑉𝑎𝑟(𝑦𝑖 − 𝑦̂𝑖)

𝑉𝑎𝑟(𝑦)
 (5) 

 
𝑀𝐴𝑃𝐸 =

100%

𝑛
∑ |

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
|

𝑛

𝑖=1
 (6) 

where 𝑦𝑖 is the actual value, 𝑦̂𝑖  is the predicted value, n is the number of observations, 𝑉𝑎𝑟(𝑦𝑖 − 𝑦̂𝑖) 

is the variance of the prediction errors, and 𝑉𝑎𝑟(𝑦) is the variance of the actual values. 

In general, the RMSE is the overall average of the errors that are committed with reference to the 

actual values and the predicted values. A lower RMSE value is better when it is in the context of 

errors; in other words, smaller errors denote a better model. EVS represents the percentage strength 

of the relationship between the dependent variable and the model being tested. It varies from 0 to 1, 

where any value close to 1 indicates that there is a high level of fit whereby the model contains most 

of the variability in the data. The MAPE quantifies predictions in percentage terms by looking at the 

absolute error made. It shows the average percentage deviation between the expected and real values. 

The MAPE is commonly used as the mean absolute percentage error, and its lower value is desirable 

because it allows easier judgement of the quality of the model in relative terms. 

2.2. ANN Model Setup 

The network's input layer receives several parameters that influence engine performance. These 

parameters are the engine speed (S), engine torque (T), intake air temperature (Tair), intake air flow 

(Qair), and fuel consumption (ṁ). The network's sole output parameter is brake power (BP), as 

illustrated in Fig. 3. In the hidden and output layers, each neuron's output is determined by two 

functions: summation and activation. The summation function computes a weighted total of the inputs 

from the preceding layer. This weighted sum is then transformed by an activation function to produce 

the neuron's output. The summation function is used to sum the input values according to their weights 

with the addition of a bias term, as shown in eq (7). The sum is then used for the activation function 

input. The activation function plays an important role in ANNs because it adds nonlinear 

characteristics to the neuron's output by computing a neuron's output by processing the weighted sum 

of its inputs. The selection of a suitable activation function is important and relies on the specific 

problem being addressed and the expected range of outputs. The logistic sigmoid function is 

particularly popular in multilayer perceptron models because of its differentiable, continuous, and 

nonlinear nature [59], [60]. The sigmoid activation function is shown in eq (8). Normalization is 

performed by limiting both the input and output data to fit within a specific range, often between 0.1 

and 0.9. The sigmoid activation function is adjusted using a designated formula, known as Eq. 6, in 

this context [61]. For regression tasks, the feedforward backpropagation network is a widely used 

form of ANN [62]. When applying an ANN, the data flow one way, starting at the input layer and 

ending at the output layer. The backpropagation algorithm is applied during the training process to 

fine-tune the neuron weights and biases to reduce the difference between the predicted and true 

outcomes [63]. The Levenberg‒Marquardt (LM) backpropagation algorithm is used to reduce the 

error by aligning the predicted outputs with the actual outputs. The RMSE, R-squared, and MAE are 

used to indicate the performance of the ANN. The needed target is to reach the lowest RMSE and 

MAE and the highest R-squared values across BP predictions. The network's hidden layer is initially 

set with 3 to 12 neurons to find the ideal number. The hyperparameters that are commonly chosen for 

the ANN model. For BP prediction, 3 neurons in the hidden layer yield the best results in terms of 

accuracy, variance explained, and the absolute difference between the predictions and actual values, 
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as shown in Table 3. A sigmoid function is employed as the activation function because of its ability 

to calibrate nonlinearity and because of its frequent use in multilayer perceptron models. The learning 

rate is fixed at 0.001, [64] to ensure stable learning and convergence, with a momentum constant of 

0.1 to accelerate convergence and avoid local minima. The number of epochs is adjusted for each 

neural network to ensure sufficient training without overfitting, meaning that the network's weights 

and biases are updated during training based on these settings. An error goal of 1e-30 is set, along 

with a regularization parameter of 0.01, to avoid overfitting by penalizing large weights. 

 
𝑦 =  ∑ (𝑤𝑖 × 𝑥𝑖) + 𝑏

𝑛

𝑖=1
 (7) 

 
𝑦 =

1

1 + 𝑒−𝑥
 (8) 

 
𝑥𝑖 =

0.8

𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛

(𝑑𝑖 − 𝑑𝑚𝑖𝑛) + 0.1 (9) 

 

Fig. 3. ANN architecture 

Table 3.  Optimization of number of neurons in the hidden layer of ANN 

Number of Neurons 

BP 

RMSE 𝑅2 MAE 
3 0.0046 0.9952 1.51 

4 0.0048 0.9949 1.57 

5 0.0046 0.9952 1.52 

6 0.0054 0.9935 1.79 

7 0.0050 0.9945 1.67 

8 0.0051 0.9941 1.72 

9 0.0052 0.9940 1.75 

10 0.0047 0.9951 1.55 

2.3. SVM Model Setup 

The support vector machine (SVM) model shown in Fig. 4 also depends on input and output 

parameters such as the ANN model [65]. Normalization is key for ensuring that every feature is 

equally considered in the model's decision-making process [66]. This is critical for increasing the 

model's sensitivity to data variations and increasing the speed of the training process. The SVM mode 

accepts the same input and output parameters (S, T, Tair, Qair, and ṁ). The network's only output 
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parameter is BP. To prepare for the modelling procedure, the dataset is subjected to normalization, 

and the input features are scaled to a homogeneous range, as shown in eq 9. We divided the dataset 

into three groups: training, validation, and testing. This section is critical for developing a strong 

model since it ensures comprehensive training and validation. It reduces overfitting and ensures that 

the model can predict any output from new data. Based on the training data, the SVM model uses a 

fit function to train the model by adjusting the internal settings of the SVR model. The model examines 

the data to understand the complicated relations between the input and output data, so this stage is 

considered the heart of the learning technique. In this model, the radial basis function (RBF) kernel is 

used to create the SVR model due to its effectiveness in handling nonlinear relationships, which 

contains hyperparameters such as regularization (C), epsilon (ε), and gamma (γ). These 

hyperparameters are commonly used in previous studies to adjust the complexity of the models 

according to the training data. The SVR model is customized with a set of selected data to obtain the 

highest performance for regression tasks. The kernel radial basis function is used because of its high 

performance in dealing with nonlinear data relationships. It allows the model to successfully translate 

input features into a higher-dimensional space for an accurate regression fit. The model is set on a 

regularization parameter, C = 100, to reduce training mistakes and produce an accurate fit to the 

training data [67], but at the cost of lower generalization. The epsilon parameter is ε = 0.01 to limit 

the tolerance range for acceptable predictions and guide the model through greater precision and 

sensitivity when fitting data [68]. The gamma parameter is set to ‘scale' to dynamically modify its 

value based on the variations in the data and changes in the curvature of the decision border and the 

model's ability to capture complicated patterns in the data. The selection of C and ε depends on the 

data characteristics and the desired precision of the model [69]. It is necessary that the model optimize 

between how precisely the model learns from training data and how successfully it applies that 

learning to new, previously unknown data. After training the model, the model is used to make 

predictions on a distinct set of data called the validation set. The flowchart for both models is shown 

in Fig. 5. 

 

Fig. 4. SVM model architecture 

3. Results and Discussion 

The performances of the ANN and SVM models are compared in Fig. 5. The comparison between 

the two models is performed according to performance metrics such as the RMSE, EVS, and MAPE. 

Additionally, various comparative parameters are used, such as target vs. predicted values, regression 

plots, learning curves, histograms of prediction errors, residual plots, and cross-validation methods. 

Both models are known for their insightful information about how best to use them in the SI engine 

sector, especially in situations where accuracy and flexibility with large, complicated datasets are 

essential. The purpose of this comparison is to indicate the accuracy, complexity, and generalizability 

inherent in each strategy to help determine which model is best for a given task. According to the 

performance metrics, the complexity and practicality of the two models were as follows: 
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• Computational Requirements: In general, such ANN models require more computing due to their 

architecture and complicated training techniques that involve a large number of neurons and 

layers. SVM models, on the other hand, are computationally simpler when dealing with the linear 

kernel, making them more suitable for applications with high processing power. 

• Training Time: The training process for the ANN model can take a long time, which requires the 

hardware support of a high caliber, particularly GPUs, and extended training time. SVM models 

are also, generally speaking, faster in terms of training, especially when using limited data or 

low-order kernels. This makes SVMs more suitable for use in situations where quick 

identification and an instant decision must be made. 

• Ease of Use: ANN-based model deployment also proves to be a fairly challenging task, which 

demands the knowledge of neural architectures along with hyperparameters. On the other hand, 

SVM models are easier to apply due to their comparatively lower hyperparameters, especially 

for persons with less experience in ML. 

• Real-World Applications: In practical conditions, this is dependent on the criteria of the specific 

problem and the particular strengths of either the ANN or the SVM. These depend on the size 

and complexity of the dataset as well as the relation patterns in the database, where in the cases 

of a large dataset that has complex and nonlinear relations, ANN models are preferred. Due to 

the ability of the networks to learn the many to many relations, several applications that require 

high accuracy have been proposed. On the other hand, SVM models are appealing because a 

simpler model that is easy to interpret and computationally less efficient is used. They are not 

prone to overfitting and are very easy to implement, especially when used in real-time 

applications and those that require fewer resources to operate. 

 

Fig. 5. Flowchart evaluation for ANN and SVM models 

3.1. Performance Analysis and Evaluation 

3.1.1. Performance Metrics for the SVM and ANN Models (RMSE, EVS, and MAPE) 

According to the RMSE, EVS, and MAPE, the SVM and ANN are compared to evaluate the 

performance of each algorithm, as shown in Fig. 6. The SVM model has a lower RMSE (0.0044) than 
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does the ANN model with a value of 0.0046, indicating that the SVM is accurate in predicting new 

data close to the target data and has a higher EVS (0.9953) compared to the ANN model with a value 

of 0.9952, indicating that the SVM indicates better model performance because it quantifies the 

percentage of the dependent variable's variation that can be predicted from the independent variables, 

suggesting that it is able to explain a greater percentage of the variance in the data, while the ANN is 

shown to have a lower value of MAPE (1.51%) compared to the SVM model with a value of 1.56%, 

suggesting that the SVM performs somewhat less well in terms of percentage error. 

To support the performance claims, appropriate statistical tests of significance were conducted. 

As a consequence, the paired t test was used on the RMSE, EVS, and MAPE values achieved on cross-

validated folds for both modes. The p values obtained from these tests are displayed in Table 4. For 

the RMSE, EVS, and MAPE, the p values are less than 0.05, which implies that the variations in the 

performances of the metrics between the SVM and ANN classifiers are not due to random sampling 

errors. 

3.1.2. Target vs Predicted Values 

The performances of the ANN and SVM models are compared in Fig. 7. The ANN model 

performs very well because its predicted values frequently match the target values, indicating a high 

degree of accuracy. This shows that the validation data fit the model quite well. It adjusts to changes 

in the target data accurately. Its capacity to represent unexpected rises and falls points to an accurate 

model with strong nonlinear variability handling capabilities. Across the whole dataset, the ANN 

predictions are in line with the goal values. This suggests that the model has probably successfully 

learned the underlying distribution of the data. Although it is not immediately apparent without testing 

on a different dataset, the ANN's close tracking of the target suggests that it may have learned specific 

characteristics and noise from the training data, which could be a risk for overfitting. The SVM model, 

on the other hand, shows more differences between the target and projected values and less accuracy. 

Predictions tend to be balanced, which may indicate more robust regularization or a more 

straightforward model. Since the SVM is less accurate at capturing extreme changes, it may be a sign 

of a simpler model or one that promotes simpler decision functions ahead of data variability fitting. 

The SVM predictions exhibit regular patterns of under- and overestimation at the peaks and troughs, 

respectively, in regard to the target values. Better generalization—which could lead to improved 

performance when faced with fresh, untested data-is suggested by the SVM's smoother prediction 

curve, albeit at the expense of short-term accuracy. The output of the ANN model has some 

fluctuations, as seen from sample points 2, 6, 7, and 8, where the predicted results are away from the 

target values, which may be a result of overtraining of the network and their abrupt changes. On the 

other hand, the SVM model, which is generally observed to yield smoothed response curves, is 

characterized by either underestimation or over-estimation in the region of the peak values, such as 

for samples 5, 6, and 7. 

This indicates that even though the SVM model lacks flexibility enough to catch high variations, 

it is more generalized or more competent at providing stable predictions in other new untested data, 

proving more competency at the cost of high near-situation volatility [70]. 

Table 4.  Comparison between SVM and ANN model in terms of statistical analysis of performance 

metrics 

Measurement Uncertainties 
RMSE 0.02 

EVS 0.03 

MAPE 0.05 

3.1.3. Regression Plots 

We can evaluate the ANN and SVM models' performance by examining the degree to which the 

projected and actual outputs for the training, testing, and validation datasets agree in the regression 

plots shown in Fig. 8. The training, testing, and validation data predictions made by the ANN model 

are all very close to the regression line, showing a high degree of agreement between the expected and 
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actual outputs. The data points and regression line almost exactly overlap, indicating a high prediction 

accuracy for the model. It appears that the ANN model generalizes well and does not overfit the 

training data based on the constant alignment observed across training, testing, and validation data. 

The ideal prediction line is shown in two models. The SVM model prediction values take the shape 

of a curve, which means that the data follow a nonlinear pattern in which a more complex function 

has been trained by the SVM model to match the data. The model works well on the data it was trained 

on, fitting almost perfectly. However, in regard to new data, it has not been seen before, as in testing; 

it does not do as well, especially for very high or very low values. This could mean that the model 

learned the training data too well and might not be good at predicting real-world situations. Moreover, 

it tends to become less accurate when the actual numbers start to increase. 

3.1.4. Histograms of Prediction Errors 

As shown in Fig. 9, the ANN model performed exceptionally well in terms of the prediction 

accuracy, exhibiting constant precision across the training, validation, and testing datasets. Its 

prediction errors were shown to be highly accurate, as they were tightly clustered around zero. The 

fact that all dataset error distribution patterns were comparable demonstrated the generalizability of 

the model. According to the reliability of the ANN model, the model was improved because it 

generated few outliers. The model is able to produce predictions that closely approximate the actual 

values, which is further supported by the prominent peaks in the density charts. The accuracy, 

generalizability, and resilience of the ANN model make it a good fit for practical applications. On the 

other hand, the SVM model yields greater variability in prediction errors with a larger spread, which 

suggests uneven predictive accuracy. A higher outlier frequency indicates that the model has a greater 

likelihood of larger errors. There were lower peaks in the density plots for the testing and validation 

data, which indicated some degree of confusion in the model's predictions. Due to these results, the 

SVM model performance and precision are still sufficient for some applications despite these 

constraints. 

The training, validation, and testing data in each dataset are usually symmetrical around zero with 

slight fluctuations around it, as seen in the peaks of the curve, with at most a value of approximately 

400 for testing. There are few training data points, approximately 350, and approximately 200 data 

points are used for the validation data, which indicates that the ANN model can be generalized. By 

comparing the distribution of the prediction errors, as illustrated by the histogram and the density plot, 

it is clearly observed that the SVM model has a wider variation in the errors. The number of training 

data examples is approximately 150, and the number of validation data examples is approximately 

350, whereas the number of testing data examples is nearly 250. If the SVM is expanded across the 

entire dataset, it is clear that although the accuracy is high, the model is less consistent than the ANN 

model. 

For both models, the prediction of stock prices is satisfactory; however, the ANN model has more 

tightly clustered prediction errors than the SVM, while the latter has recorded some accurate 

predictions but has greater variability in the errors observed [71]. 

3.1.5. Residual Plots 

As shown in Fig. 10, in both graphs, the horizontal axis shows the values predicted by the models, 

while the vertical axis shows the residuals, which are the differences between the actual values and 

the predictions. The red dashed line at the zero mark on the vertical axis represents perfect predictions 

with no error. The ANN residuals indicated a dispersed range of values greater than that of the SVM 

model. This means that there is more uncertainty in the prediction values from the ANN model, but 

the residuals are mostly scattered near the zero line, with no clear pattern. There is one point that 

stands out far above the rest, indicating a significant prediction error for that particular data point, 

while the SVM's graph has its residuals more closely clustered around the zero line, suggesting smaller 

errors in prediction. However, there seems to be a slight trend where the residuals become more 

negative as the predicted values increase, indicating a consistent underestimation for larger values. 

For ANN model testing, smaller residuals approaching zero suggest good forecasting precision for 

values near 0.125 to 0.175. However, the residuals become more volatile, particularly at 0.225 to 0.250 
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and 0.275 to 0.300, which means that they have higher prediction errors than ideal random forests. 

The only noticeable discrepancy that was estimated to be beyond the forecasted value was 0.325, 

which can also indicate a miscalculation in terms of prediction. However, for the SVM model, the 

observed residuals are considerably close to zero for predicted values that are almost equal to zero 

(0.125 to 0.175), indicating good accuracy. The residuals for values of approximately 0.200 to 0.225 

and 0.250 to 0.275 are, however, relatively accurate, with higher levels of variability. Residuals near 

0.300 to 0. Moreover, 325 remained near zero, indicating good accuracy at the richness level of the 

predictions. 

In summary, both the SVM and ANN models are good at performing all four functions of 

classification, but the residuals of the SVM are closer to zero most of the time and thus must be 

considered more consistent [72]. 

 

Fig. 6. Performance metrics comparison between SVM and ANN models, showcasing RMSE, EVS, and 

MAPE values 

 

Fig. 7. Comparison of actual vs. predicted brake power (kW) using (a) ANN and (b) SVM models on 

validation data 

3.2. Visualizing Data, Generalization, and Overfitting Protection Strategies 

According to the ANN and SVM results, innovative visualizations were utilized to highlight the 

model's efficacy and the precise measures employed to reduce the risk of overfitting. By incorporating 

some approaches, it is necessary to conduct a transparent and rigorous analysis that reinforces the 

generalizability and dependability of the findings. The results of both algorithms are investigated using 

two methods: cross-validation and learning curve analysis. 

3.2.1. Learning Curve 

The learning curve in Fig. 11 of the ANN model begins with higher errors and gradually 

decreases as more data are added during the training phase. This behavior shows that feeding 

additional data makes the model work well in terms of the prediction of outputs, even though it may 

not perform well at first. After these high error values, the error decreases as the testing and validation 

error rates both significantly decrease to closely resemble the training error. ANNs have been shown 
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to be able to reduce performance on unseen data, and their ability to efficiently adapt to new data has 

been demonstrated by their convergence at decreased error rates with increasing data volume, while 

the curve of the SVM model quickly decreases after a rapid decrease in the error rate is observed. This 

indicates that the model needs only a small quantity of data to comprehend the underlying data 

distribution. The SVM catches the important patterns early on, as demonstrated by the negligible 

change in error rates with more data. The model's capacity to be generalized from the beginning is 

demonstrated by the testing and validation error rates, which follow this trend of rapidly declining and 

then running parallel to the training error. The strong performance of the SVM is implied by the close 

association between these errors over a range of data sizes. 

 

Fig. 8. Comparative regression analysis of (a) ANN and (b) SVM models, across training, testing, and 

validation datasets 

 

Fig. 9. Histograms of prediction errors for (a) ANN model and (b) SVM model 

3.2.2. Cross-Validation 

When applying the cross-validation technique to the two algorithms (ANN and SVM), as shown 

in Table 5, the R² values for the BP ANN range from approximately 0.9957 to 0.9985, with an average 

R² of 0.9966, while the R² values for the SVM show more variability, ranging from approximately 

0.9846 to 0.9967, with an average R² of 0.9907. The high R² values obtained for the BP ANN and 

SVM across different folds of the dataset affirm their ability to generalize well to unseen data. The 

near R² values with high averages support the conclusion that BP does not overfit. 

The results shown in Table 6 indicate that the ANN model achieved a mean RMSE of 0.0036 ± 

0.0007, an EVS of 0.9970 ± 0.0008, and a MAPE of 1.23% ± 0.16%, whereas the SVM model 

achieved a mean RMSE of 0.0057 ± 0.0016, an EVS of 0.9949 ± 0.0033, and a MAPE of 2.54% ± 

0.67%. Indeed, the Mohamed S. Hofny (Comparative Study of ANN and SVM Model Network 

Performance for Predicting Brake Power in SI Engines Using E15 Fuel) findings of the comparison 
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among the prediction models showed that the ANN model has lower RMSE and MAPE than the SVM 

model, as indicated in Fig. 12, which, as a result, shows higher accuracy and lower percentage error 

on the unseen data. It can be seen that the scores for EVS are again very similar to those based on the 

two models, although the ANN model has a slight advantage. It is now time to quantify the fact that 

the SVM model may be better at generalizing to other unseen instances through analysing other 

measures such as cross-validation techniques. The additional performance metrics and the statistical 

significance tests (paired t tests) also indicate the differences in the level of generalization of the 

models. 

 

Fig. 10. Residual validation plots for both (a) ANN model (b) SVM model 

 

Fig. 11. Learning curves for both (a) ANN model and (b) SVM model 

3.2.3. Robustness and Sensitivity Analysis 

The actual sensitivity analysis was aimed at examining and comparing the stability and, at the 

same time, the sensitivity of the ANN and SVM models. Thus, this paper aims to quantify the 

behaviour of the models when the input parameters deviate from some predefined normal values, 

which is quite important for determining their stability in the case of their application to data 

containing significant noise. In the sensitivity analysis, the researcher entered random small noises 

into the input data and evaluated the performance measures (RMSE, EVS, MAPE) with the noisy 

data. To generate the perturbed dataset, a noise level of 5% of the standard deviation of the entire input 

data was added. 

As seen from the findings in Table 7, both models slightly increase the RMSE and MAPE with 

distorted input data due to their responsiveness to input changes. However, the EVS values are not 

significantly affected and are constant, which ensures that the models still capture the variation in the 

data even with noise added. Thus, it can be concluded that both outcomes are rather stable to a certain 

extent, yet the ANN model is less sensitive to input variations than the SVM model. This robustness 
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is important to guarantee that the models work under various scenarios and with noisy inputs, which 

increases the scope of their use in practical applications. 

 

Fig. 12. Performance metrics of ANN and SVM algorithms 

Table 5.  K fold cross-validation R² scores for BP in ANN and SVM algorithms 

ANN SVM 

[0.997792416162308, 0.9940754076638034, 

0.9985444831809122, 0.9956917941883376, 

0.9965629490071887, 0.996868747853836, 

0.9961488436017671, 0.9966151990612169, 

0.9961036682792997, 0.9971131870507753] 

[0.9944836144167739, 0.9966706793643765, 

0.9948164486902226, 0.9951218762877294, 

0.9848213270539302, 0.984566612412749, 

0.9912298668340159, 0.9868808614642891, 

0.9852295773921526, 0.9935651976058324] 

Average R²: 0.9965516696049445 Average R²: 0.9907386061522072 

 

The performance differences between the ANN and SVM models are quite surprising and can 

directly impact real-life applications pertaining to the SI engine sector. The accuracy of the ANN 

model is higher; hence, it has smaller errors than the other models, making it more suitable for precise 

jobs such as adjusting the engine control unit and predictive maintenance, where accuracy in 

predicting the parameters of the engines is paramount for optimizing performance while inhibiting 

failure chances. On the other hand, the SVM model can be applied in situations with repetitiveness, 

real time, and high noise or variation in the data, for instance, onboard diagnostic and real-time 

monitoring techniques. However, for the same reasons, SVM has fewer equations, which translates to 

better interpretability, thus fitting the regulatory and safety analyses. Conclusively, limitations and 

assumptions that could affect the results presented in this comparative study of ANN and SVM models 

are as follows. The amount of data in the dataset, the quality of the data, the bias of the data, and the 

particular preprocessing steps influence the model and its overall performance. There is an importance 

of bringing tunable hyperparameters, and the specified configurations may not be the best universally. 

Moreover, the sensitivity analysis was conducted using simulated noise, the reality of which may not 

be quite similar to the one portrayed in the study. The SVM model has the drawback of assuming that 

accurate nonlinear separation of data may not always be achievable, whereas the ANN model is a 

disadvantage since the model is not easily understandable or explainable.  When using the dataset to 

train the SVM model, it is assumed that the set can be effectively classified by a nonlinear function, 

an assumption that may sometimes be false, while the ANN model, as mentioned earlier, is not easily 

interpretable. Research could be conducted to determine how both ANNs and SVMs can be used 

together, as they both have advantages and disadvantages that may make them more helpful for use 

both in tandem. It may have more satisfactory results to apply it along with domain knowledge and a 

set of adaptive learning techniques to improve model interpretation and performance in practice in 
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actual-time applications. The results could be further extended if the set of models were used for 

various types of engines and for various working conditions. According to these advances, the above 

investigations will surely advance SI engines and the application of machine learning techniques. 

Table 6.  Cross-validation performance metrics 

Metric ANN (Mean ± Std) SVM (Mean ± Std) 

RMSE 0.0036 ± 0.0007 0.0036 ± 0.0007 

EVS 0.9970 ± 0.0008 0.9970 ± 0.0008 

MAPE 1.23% ± 0.16% 2.54% ± 0.67% 

Table 7.  Sensitivity analysis performance metrics 

Metric ANN (Original) ANN (Perturbed) SVM (Original) SVM (Perturbed) 

RMSE 0.0036 ± 0.0007 0.0041 ± 0.0008 0.0036 ± 0.0007 0.0051 ± 0.0017 

EVS 0.9970 ± 0.0008 0.9962 ± 0.0010 0.9970 ± 0.0008 0.9955 ± 0.0030 

MAPE 1.23% ± 0.16% 1.51% ± 0.26% 2.54% ± 0.67% 2.20% ± 0.78% 

4. Conclusion 

According to the previous results, the ANN and SVM models are compared to indicate the 

performance of each model. A comparison between the two models is made through a comparison of 

the RMSE, EVS, and MAPE. Additionally, target vs. predicted values, regression plots, learning 

curves, histograms of prediction errors, and residual plots were generated. Cross-validation was used 

to determine whether there was overfitting, and robustness and sensitivity analyses were used to 

analyse the stability and sensitivity of the model to the input parameters. The support vector machine 

(SVM) model is indicated to have a lower RMSE (0.0044) and higher EVS (0.9953), while the ANN 

is shown to have a lower MAPE (1.51%). Additionally, the SVM model has less variance than the 

ANN model and thus has a lesser tendency to overfit and generalize better across datasets than does 

the ANN model. Robustness and sensitivity analysis also showed that both models are relatively 

insensitive to small changes in inputs, although the ANN model is somewhat more sensitive than the 

SVM model. Both models show some prediction errors, but there is no complex pattern in these errors 

that suggests a problem with the models' assumptions. The ANN seems to have a larger outlier, while 

the SVM shows a more consistent but possibly biased prediction. The residual and error analysis 

showed that large errors occasionally existed for the ANN model. The sample size is relatively small 

(60 samples) and can affect the accuracy, generalizability and robustness of each model, which can 

cause a certain extent of overlearning in the ANN model. Possible artefactual methods in the dataset 

could affect the generalizability of the results. Nevertheless, the comparative analysis of ANN and 

SVM models is useful for understanding the state of play in the SI engine sector. Therefore, it can be 

concluded that the use of the SVM model for SI engines is better because of its stable predictions, 

lower RMSE, higher EVS, and reliability. Future work will include enlarging the dataset, testing other 

methods and verifying the results in the real world. An ensemble of ANNs and SVMs can also be used 

to enhance the predictive accuracy of such models. 
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