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1. Introduction 

Bacteria are ubiquitous, inhabiting a vast array of environments both within and outside the 

human body. These microbial organisms exhibit a remarkable diversity in their physical 
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 Identifying and classifying bacterial species from microscopic images is 

crucial for medical applications like prevention, diagnosis, and treatment. 

However, because of their diversity and variability in appearance, 

manually classifying bacteria is difficult and time-consuming. This work 

suggests employing deep learning architecture to automatically categorize 

bacterial species in order to overcome these difficulties and raise the 

accuracy of bacterial species recognition. We have evaluated our suggested 

approach using the Digital Images of Bacteria Species (DIBaS), a publicly 

accessible resource of photographs of tiny bacteria.  This work uses a 

dataset that differs in terms of bacterial morphology, staining methods, and 

imaging circumstances. This paper aims to enhance the accuracy and 

reduce the computational requirements for Convolutional Neural Networks 

(CNN) based classification of bacterial species using GoogLeNet and 

AlexNet to train the models. This paper focuses on employing transfer 

learning to retrain pre-trained CNN models using a dataset consisting of 

2000 images encompassing 12 distinct bacteria species known to be 

harmful to human health.  The concept of transfer learning was utilized to 

expedite the network's training process and enhance its categorization 

performance.  The results are promising, with the method achieving an 

accuracy of 98.7% precision, recall of 99.50%, and an F1-score of 99.45%   

with classifier speed. Furthermore, the proposed bacteria classification 

approach demonstrated strong performance, irrespective of the size of the 

training data used.  This paper contributes by automating bacterial 

classification to facilitate faster and more accurate identification of 

bacterial species, which facilitates the treatment of infections and related 

diseases, in addition to monitoring public health, and promoting the wise 

use of antimicrobial drugs. To improve outcomes in the future, researchers 

can also integrate deep learning techniques with other machine learning 

methods. 
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characteristics, including variations in appearance, shape, and size. While many bacterial species are 

beneficial to humans, some can have harmful effects and cause a variety of diseases [1]. 

Beneficial bacteria play crucial roles, such as aiding in food digestion and supporting drug 

production processes. Conversely, harmful bacterial species are a primary cause of numerous diseases 

that impact human health. Consequently, the accurate classification and identification of bacterial 

species is of paramount importance, especially in fields like medicine, biochemistry, the food industry, 

and agriculture. Healthcare practitioners can get important insights into medical prevention, diagnosis, 

and treatment techniques by being aware of the exact genera and species of bacteria. However, 

because of their microbial variety, small size, and imperceptibility to the human sight, identifying and 

classifying bacteria is a process that is intrinsically difficult [2]. Conventional laboratory approaches 

for identifying bacterial strains depend on expensive and intricate molecular biology or biochemical 

procedures. These methods usually need a great deal of sample preparation, which is handled by 

skilled experts or microbiologists. The shape and size of bacterial cells are the most obvious visual 

characteristics used to identify them. Three primary shape-based forms of bacteria may be roughly 

identified: spiral, spherical, and cylindrical. This categorization scheme, however, is limited since 

various bacteria might have comparable sizes or shapes, and even distinct species of bacteria can have 

different physical characteristics [3]. 

A selection of images of tiny microorganisms taken from an accessible dataset is shown in Fig. 

1. This picture makes it very evident that size and form are not reliable markers for classifying bacteria. 

Furthermore, although bacteria can occasionally look solitary, they can also occasionally form 

clusters. Because of this, morphology is typically regarded as an additional crucial characteristic for 

the categorization of bacteria. However, as Fig. 1 illustrates, while many bacterial species exhibit 

morphological diversity, others are difficult to distinguish from one another. Even for highly qualified 

or experienced professionals, the categorization of bacteria is extremely challenging because of these 

difficulties. 

Classifying bacteria is an important subject in many domains, including environmental 

monitoring, food safety, and clinical diagnosis. For the purposes of environmental risk assessment, 

illness diagnosis, and outbreak prevention, accurate and rapid bacterial identification is crucial. 

However, the suggested deep learning-based strategy seeks to overcome a number of drawbacks and 

difficulties that standard bacterial classification approaches frequently encounter. The morphological 

features of bacteria vary greatly, encompassing changes in size, shape, and cell organization. It can be 

challenging to correctly identify between various bacterial species or strains based just on their 

outward appearance, particularly when working with closely related or morphologically identical 

bacteria.  Different staining procedures are frequently used to prepare bacterial samples for 

microscopic inspection, which might affect the bacteria's appearance [4].  Furthermore, the bacterial 

images may exhibit diversity due to factors including illumination, resolution, and imaging equipment, 

which makes it challenging to create a reliable categorization system. Efficient and automated 

bacterial categorization is essential for prompt decision-making in dietary, environmental, and 

healthcare contexts. Now that deep learning and computer vision have made such amazing strides 

recently, it is conceivable to automate microorganisms. Prior to the development of deep learning, 

there were several obstacles in the way of accurately interpreting and classifying medical reports or 

photos because of restrictions in publicly available datasets. However there has been a notable upsurge 

in published papers with cutting-edge research using deep-learning methods in the medical field in 

recent years. These advancements have changed the game, making it more and more possible to use 

artificial intelligence to automate jobs and replicate human behavior [5]. 

Deep artificial neural networks called CNNs are utilized for object detection based on image 

visualization, similarity grouping, and image categorization. In addition to ensuring dependability, the 

use of CNNs to extract feature properties in an interpretable manner enables the evaluation of model 

authenticity based on training data without incurring influence from individual intuition.   Beyond 

scholarly investigations, deep learning is widely used in data-intensive industries.  Transfer learning 

reduces training time and improves performance on smaller domain-specific datasets, such as bacteria 

photos, by utilizing pre-trained CNN models on big datasets like ImageNet [6]. By utilizing cutting-
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edge computational approaches, this work proposes a computer-aided recognition system particularly 

intended for identifying bacterial genera and species. Our objective is to create an effective and precise 

system that automates the recognition process. With the use of this approach, bacteria will be precisely 

categorized into the genera and species to which they belong. 

Prior research has exhibited the efficacy of AlexNet and GoogLeNet in many biomedical picture 

classification assignments, including but not limited to histological examination, cellular 

identification, and medical diagnosis. These models are particularly well-suited for the bacterial 

classification issue, which frequently entails differentiating between morphologically identical 

bacterial species, because of their capacity to detect minute visual patterns and generalize to new data 

[5]. The study can make use of the distinct advantages and architectural distinctions between AlexNet 

and GoogLeNet by utilizing both of them simultaneously. Since the two models may capture various 

features of the bacterial imaging data, this enables a more thorough assessment of the resilience and 

effectiveness of deep learning-based bacterial categorization. Both GoogLeNet and AlexNet 

underwent pre-training on extensive natural picture datasets, including ImageNet, that encompass a 

wide range of visual patterns and textures. With only a small amount of bacterial image data, this pre-

training helps the models acquire broadly applicable low- and mid-level visual characteristics that are 

useful when applying them to the job of bacterial classification. The bacterial dataset may be small, 

therefore substantial training on it may not be necessary. However, the model's performance can be 

greatly enhanced by the transfer learning technique [7]. 

This work is organized into six primary sections. An overview of pertinent literature is provided 

in Section 2. The issue of machine learning (ML) based approaches for classifying bacteria is covered 

in detail in Section 3. The findings of the simulations used for categorization are shown in Section 4, 

which follows. Section 5 provides a summary of the main conclusions and their consequences for the 

article. Finally, Section 6 presents the limits and further research. 

2. Related Work 

In recent research, it has been demonstrated that deep learning methods can be effectively 

employed in the development of medical applications utilizing diverse algorithms. These applications 

have found utility in various settings, including hospitals, veterinary clinics, and the food industry, 

where they serve as image classification tools in both medical and biological contexts. In [8], the 

authors successfully performed bacterial classification by utilizing a pretrained DenseNet-201 model. 

The findings demonstrated that DenseNet-201 achieving an impressive accuracy rate of 99.2%. 

Similarly, in [9], a study focused on the identification and classification of longitudinal bacteria 

through transfer learning with ResNet-18. The results showed ResNet-18 to accurately classify 99% 

of the bacteria. Another research effort [10] employed a (CNN) model, which exhibited a 95% 

accuracy in identifying five species of bacteria of training data for identifying COVID-19, viral 

pneumonia. Reference [11] employed ResNet-18 and ResNet-50 models to classify a dataset 

comprising approximately 660 images of 33 bacterial species, achieving an impressive accuracy rate 

of 99.35%. Moreover, CNN models have been successfully utilized for automated counting of 

bacterial colonies without human intervention [12]. In a particular study [13], a ML approach was 

utilized to classify a dataset of 2,520 Klebsiella images. The results showcased an accuracy of 96.71%. 

In [14], the authors investigated the performance of a CNN in automatically detecting coronaviruses 

using transfer learning. The study achieved an accuracy of 96.7%.  Transfer learning has been 

effectively employed in the detection, identification, and classification of bacteria. For instance, in 

[15], bacterial classification was performed using atrous convolutions and transfer learning, with the 

proposed atrous transfer learning model achieving a commendable classification accuracy of 95%. 

Furthermore, [16] used a pre-trained ResNet and, without the need for any data augmentation, 

attained the greatest accuracy 99.2%.  Another study [17] introduced a generative adversarial network 

(GAN) that utilized transfer learning for automated detection of COVID-19-induced pneumonia. 

Among the evaluated models, ResNet exhibited the highest performance, achieving an impressive 

accuracy of 99% on the test dataset. To overcome the limited availability in [18], researchers explored 
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different ML techniques with the objective of constructing an ensemble-based feature extractor and 

selector to enhance the classification of microscopic bacterial images. [19] presented a practical 

approach to address the selection of deep learning models for workpiece classification and defect 

detection.  

 

 

Fig. 1. Distinct genera and species of bacteria from the DIBas dataset [4] 

The study identified six research gaps by carefully examining the strengths and weaknesses of 

various algorithms in the literature. In [20], CNN was employed to recognize distinct bacterial 

colonies by analyzing their visual characteristics in images taken by cell phone cameras under 

different settings. The aim of this approach was to accomplish the task without the need for specialized 

expertise or the shipping of physical samples. In [21], a hybrid model called CNN-SVM was utilized, 

resulting in an accuracy of 98.7%. This accuracy was higher compared to other machine learning 
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approaches used in the study. Additionally, by combining a CNN with Naïve Bayes, an accuracy of 

99.9% was achieved. Furthermore, a study by researchers in [22] proposed a deep transfer learning 

approach that involved training and validating on X-ray images using ResNet-50, DenseNet-121, and 

VGG-19. The achieved accuracy was 94%, demonstrating the potential of transfer learning in 

identifying COVID-19 and conventional pneumonia in chest X-ray images. In another study, the 

objective was to detect pathogenic bacteria in food and water at an early stage using computational 

live bacterial detection. This was accomplished through the implementation of a deep neural network 

as described in [23]. Additionally, researchers in [24] introduced MotilityJ, an open-source tool 

developed using deep transfer learning, for detecting bacterial spread. The results demonstrated that 

the proposed tool achieved up to 100% accuracy in segmenting bacterial colonies. Ref. [25] introduced 

a new data augmentation technique based on the idea of artificial zooming as well as a classification 

utilizing MobileNetV2. They said that MobileNetV2 was used to obtain an accuracy of 97.38%. The 

DIBaS dataset was also used recently [26] to classify microorganisms automatically. They created a 

binary classification system with the ability to discriminate between gram-positive (GP) and gram-

negative (GN) bacteria. Additionally, [27] suggested a methodology for classifying bacteria using a 

capsule network that works better with pictures that have a variety of forms in them. According to 

their experimental results with the DIBaS dataset, the maximum accuracy of 96.08% with a precision 

of 95.98% was attained. In contrast, a quantum-based CNN for the categorization of bacteria was 

proposed in the research [28]. Additionally, the authors tested their suggested approach on the DIBaS, 

precisely categorizing six groups of harmful bacteria, and were able to reach a 96.54% accuracy rate. 

3. ML Based Bacteria Classification Methods 

Conventional categorization techniques are often prone to errors. When it comes to classifying 

microscopic images such as those depicting diabetes, oral cancer, cervical cancer cells, 

microorganisms, etc. ML approaches have produced encouraging results. This provides scientists with 

inspiration and a place to start when classifying various bacteria in microbiology using similar effort. 

Machine learning techniques have shown to be more successful than conventional methods, including 

benefits like efficiency, precision, affordability, and ease of use. Many researchers have produced 

using machine learning techniques [18]. As a branch of AI, ML finds widespread use in sentiment 

analysis, voice recognition, medical diagnosis, financial services, signal processing, fretting fatigue 

analysis, emotional analysis, and network packet categorization.  An ML model typically consists of 

two phases: testing and training [29]. In the testing phase, the learning model employs the execution 

engine to create predictions for the previously unknown data. In the training phase, samples are used 

as input, and features are learnt via learning algorithms to form the model. ML may be divided into 

three groups: reinforcement learning, unsupervised learning, and supervised learning. 

3.1. Convolutional Neural Networks (CNNs) 

CNNs are the brains of computer vision and image recognition applications. “Computer vision” 

is the area of AI that allows computers to interpret and process pictures and other visual data. CNNs 

use three-dimensional input to carry out tasks like object recognition and picture categorization. 

CNNs, an enlarged version of artificial neural networks, are mostly employed for feature extraction 

from matrix datasets that resemble grids. As seen in Fig. 2 [30], a CNN is made up of several layers, 

including the input layer, pooling layer, convolutional layer, and fully connected layers. 

There are three primary categories of layers in them [11], [30]: 

• Convolutional layer: The different characteristics from the input images are initially extracted 

using this layer. In this layer, we extract features from the input image using a kernel approach 

or a filter. 

• Pooling layer: The primary objective of this layer is to reduce computing costs by reducing the 

convolved feature map. This may be achieved by working on each feature map independently 

and reducing the connections between layers. Various types of pooling procedures exist, 

contingent upon the method utilized. There is average and maximum pooling available. 
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• Fully-connected (FC) layer: The FC layer, which also contains the weights and biases, connects 

the neurons between two distinct layers. These layers are often placed ahead of the output layer 

and comprise the last few tiers of a CNN architecture. 

For a bacteria classification task using machine learning, the following performance metrics can 

be calculated to evaluate the model's performance: 

• Accuracy: This is the total percentage of the model's correct predictions. A general idea of the 

model's capacity to accurately categorize bacterial samples is provided by accuracy. 

• Precision: The percentage of real positive predictions among all the model's positive predictions 

is called precision. In situations when erroneous positive forecasts are expensive or undesired, 

precision is especially crucial. 

• Recall (Sensitivity): The percentage of accurate positive predictions among all real positive 

occurrences is measured by recall.  

• F1-Score: This balanced statistic takes into account both measurements and is calculated as the 

harmonic mean of recall and accuracy. When you want a single statistic that takes into account 

the accuracy and recall of the model, the F1-score comes in handy.  

• Confusion Matrix: By displaying the quantity of true positives (TP), true negatives (TN), false 

positives (FP), and false negatives (FN), a confusion matrix offers a thorough analysis of the 

model's performance. This can assist in pinpointing the precise regions in which the model is 

having difficulty or excelling. 

• The receiver operating characteristic's area under the curve (ROC-AUC): The model's capacity 

to discriminate between positive and negative classes is gauged by the ROC-AUC score. When 

working with unbalanced datasets or needing to modify the decision threshold, this statistic is 

helpful.  

For the proposed bacterial classification model, the following five performance metrics were 

applied, as described in Table 1. 

 

Fig. 2. CNN architecture 

Table 1.  Performance measurements 

Measurement Formula/Description 

Accuracy 
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 Score 
2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
 

(with weighted average) 

AUC_ROC Area under the receiver operating characteristic curve 
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The steps depicted in Fig. 3 are followed when employing image processing to detect 

microorganisms and starting with setting up the bacterial database, which is required for the data 

collection procedure [32]. 

 

Fig. 3. Bacteria classification 

3.1.1. AlexNet Network 

AlexNet is a CNN that has made a significant impact in the field of machine learning, particularly 

in the application of deep learning for machine vision tasks. The structure of AlexNet comprises 

several layers, including convolutional, max-pooling, and fully connected layers [31]. The initial layer 

is a convolutional layer that generates 96 images, each with a size of 55 × 55 pixels. This is followed 

by a max-pooling layer, which produces an output of size 27 × 27 × 96 by using a window size of 3 × 

3 and a stride of 2. The subsequent layer is another convolutional layer with 256 filters of size 5 × 5. 

It applies a stride of 1 and a padding of 2. Layer 4 is a down-sampling layer, or max-pooling layer, 

that results in an output size of 13 × 13 × 256. It uses a window size of 3 × 3 and a stride of 2 [32]. 

Layer 5 of AlexNet is a convolutional layer that produces feature maps of size 13 × 13 × 384 

using 384 filters of size 3 × 3. It applies a stride of 1 and a padding of 1. The sixth layer is another 

convolutional layer with 384 filters of size 3 × 3, a stride of 1, and a padding of 1. 

Layer 7 follows as yet another convolutional layer, comprising 256 filters of size 3 × 3, a stride 

of 1, and a padding of 1. The eighth layer is a down-sampling, or max-pooling, layer with a window 

size of 3 × 3 and a stride of 2. 

Layer 9 represents the first fully connected layer, consisting of 4096 neurons. It is followed by a 

second fully connected layer, also with 4096 neurons, in Layer 10. The eleventh layer serves as the 

final fully connected layer, containing 1000 neurons that correspond to the 1000 classes in the 

ImageNet dataset. The final layer is a softmax layer, utilized for classification purposes. The 

architecture diagram of AlexNet can be seen in Fig. 4 [33]. 

This paper chose AlexNet CNN architectures for the bacterial species classification task for the 

following reasons: 

• AlexNet is one of the pioneering and influential CNN models, known for its groundbreaking 

performance in the ImageNet competition. 

• The researchers may have chosen AlexNet as a baseline or comparison model to evaluate the 

improvements achieved by their proposed optimizations and techniques. 

• The relatively simpler architecture of AlexNet, compared to GoogLeNet, may have made it a 

suitable choice for exploring the impact of architectural changes and optimization strategies. 
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The essential layers of AlexNet topologies and their roles in enhancing the models' overall 

usefulness are as follows [35]: 

1- Convolutional Layers: 

• The convolutional layers in AlexNet are responsible for extracting low-level to high-level visual 

features from the input images. 

• The early convolutional layers (e.g., Conv1, Conv2) capture simple, low-level features like 

edges, shapes, and textures. 

• The later convolutional layers (e.g., Conv3, Conv4, Conv5) aggregate these low-level features 

into more complex, higher-level representations, such as object parts and semantic components. 

2- Activation Functions: 

• Non-linear activation functions, such as ReLU (Rectified Linear Unit), which add non-linearity 

and allow the model to learn more intricate patterns, come after the convolutional layers. 

3- Pooling Layers: 

• The pooling layers, such as Max Pooling, perform downsampling and dimensionality reduction 

by extracting the most salient features from the feature maps. 

• This helps to reduce the number of parameters in the model, making it more computationally 

efficient and less prone to overfitting. 

4- Fully Connected Layers: 

• The final layers of AlexNet are fully connected layers, which take the high-level features 

extracted by the convolutional and pooling layers and use them for classification. 

The fully connected layers map the flattened feature representations to the final output classes, 

effectively performing the classification task. 

 

Fig. 4. Architecture diagram of AlexNet [34] 
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3.1.2. GoogleNet Network 

GoogleNet distinguishes itself from previous state-of-the-art architectures like AlexNet and ZF-

Net through the incorporation of various techniques. These techniques include 1×1 convolutions and 

global average pooling, which enable the creation of a deeper architecture with improved capabilities. 

Fig. 5 provides a visual representation of the architectural details of GoogLeNet. The utilization of 

1×1 convolutions is a notable feature of the Inception architecture employed by GoogleNet. These 

convolutions are employed to reduce the number of parameters in the architecture, resulting in 

increased depth. By decreasing the parameters, the architecture can capture more expressive 

representations, leading to enhanced performance [36]. 

In contrast to previous architectures like AlexNet, GoogleNet replaces fully connected layers at 

the end of the network with global average pooling. This layer takes a 7×7 feature map and computes 

its average, resulting in a 1×1 output. This approach reduces the number of trainable parameters to 

zero and improves top-1 accuracy by 0.6%. The Inception module within GoogleNet differs from 

those in previous architectures. It incorporates parallel 1×1, 3×3, and 5×5 convolutions, as well as 3×3 

max pooling, at the input. The outputs of these operations are concatenated to generate the final output. 

This design allows the network to effectively handle objects at multiple scales, as filters of different 

sizes capture different levels of detail. GoogleNet incorporates auxiliary classifier branches as an 

integral part of its architecture, strategically devised for training purposes. These branches are 

comprised of a 5×5 average pooling layer with a stride of 3, a 1×1 convolution employing 128 filters, 

two fully connected layers with 1024 and 1000 outputs respectively, and a softmax classification layer. 

The losses produced by these branches are combined with the overall loss, with a weight of 0.3 

assigned to them. These auxiliary classifiers effectively tackle the issue of gradient vanishing while 

also contributing to regularization during the training process [37]. 

The GoogleNet architecture consists of a total of 22 layers, designed to be computationally 

efficient. The aim was to ensure that the architecture could run on individual devices, even those with 

limited computational resources. The auxiliary classifiers within the architecture have the following 

architectural details [38]: 

• Average Pooling Layer: This layer performs average pooling on the input feature maps using a 

filter size of 5×5 and a stride of 3. 

• 1×1 Convolution: Following the average pooling layer, a 1×1 convolution is applied to reduce 

the dimensionality of the feature maps. This convolutional layer employs 128 filters and uses 

the Rectified Linear Unit (ReLU) activation function. 

• Fully Connected Layer: After the 1×1 convolution, a fully connected layer is employed with 

1025 outputs and the ReLU activation function. This layer combines and refines the features 

extracted from the previous layers. 

• Dropout Regularization: Dropout regularization is applied with a dropout ratio of 0.7 to prevent 

overfitting. During training, this technique randomly drops out units from the fully connected 

layer to improve generalization. 

• Softmax Classifier: The final component of the auxiliary classifier is a softmax classifier with 

1000 classes output, similar to the main softmax classifier. It assigns probabilities to each class, 

enabling classification based on the learned features. 

For the purpose of classifying bacterial species, this article selected GoogLeNet CNN 

architectures for the following reasons: 

• GoogLeNet is a well-established and highly effective CNN model that has demonstrated 

impressive performance in various image classification tasks. 

• The researchers likely selected GoogLeNet due to its depth, efficient use of parameters, and 

proven ability to handle complex image datasets. 
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• GoogLeNet's “Inception” modules, which allow it to extract features at multiple scales, were 

likely seen as particularly suitable for capturing the diverse characteristics of bacterial colonies. 

The essential layers of GoogLeNet topologies and their roles in enhancing the models' overall 

usefulness are as follows [39]: 

• Convolutional Layers: From the input images, GoogLeNet's convolutional layers extract both 

high-level and low-level visual characteristics. These layers enable the model to learn 

representations and patterns that are helpful for picture classification tasks by applying a series 

of learnable filters to the input.  

• The Inception module: a customized convolutional block that executes parallel convolutions 

with filters of various sizes (1x1, 3x3, 5x5), is the fundamental invention of GoogLeNet. This 

enhances the model's capacity to handle a wide range of intricate visual patterns by enabling it 

to simultaneously record elements at many sizes. 

• Pooling Layers: GoogLeNet uses pooling layers, such max-pooling and average-pooling, to 

downscale the input by reducing its spatial dimensions. This strengthens the model's resistance 

to slight distortions and translations in the input data.  

• Fully Connected Layers: The last layers of GoogleNet are fully connected layers that provide 

the final classification outputs using the previously obtained flattened feature maps. These layers 

support the model's final prediction-making process by integrating the learnt visual information. 

 

Fig. 5. Architectural details of GoogLeNet [39] 

3.1.3. Transfer Learning 

A machine learning technique called transfer learning seeks to improve performance on a new 

task or domain by applying information from a related but unrelated task or domain. Transfer learning 

allows us to utilize pre-existing models that have been trained on large datasets and have picked up 

general patterns and characteristics, saving us the trouble of starting the model training process from 

zero. The fundamental concept underlying transfer learning is that a model trained on a particular 

task or domain can capture valuable representations and knowledge that can be advantageous for a 

different task or domain [40].  

By leveraging the knowledge already present in the pre-trained model, we can achieve improved 

performance even when the labeled data available for the new task is limited. During the training of 

a neural network, the weights or parameters of the network must be initialized with initial values. 

The selection of an appropriate technique for weight initialization is crucial as it can greatly influence 

both the rate at which the network converges and its final accuracy. If the weights are initialized 

randomly or arbitrarily, it can result in slow convergence or hinder the learning process altogether. 

Hence, it is vital to choose a reliable and effective method for weight initialization [41], [42].  

Transfer learning is an approach to weight initialization that involves transferring the weights 

obtained from a pre-trained model to a target model. Instead of initializing the weights randomly, the 

target model inherits the weights that were previously learned. This process, known as transfer 
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learning, entails extracting the learned weights from a trained base network (referred to as a 

pretrained model) and transferring them to an untrained target network, rather than starting the 

training of the target network from scratch [43]. Through this approach, the learned features from 

one network are transferred and utilized in another network that is specifically designed for a similar 

task.  

The difference between Transfer learning versus traditional learning is seen in the Fig. 6.  

Both of the models in the above figure, which represent the classic method without transfer learning, 

are trained from scratch even if they are intended for distinct tasks. Conversely, in transfer learning, 

we train a pre-trained model that does a different job using our data set [44].  

 

Fig. 6. Traditional learning vs transfer learning 

We now present a few case studies and examples that demonstrate the use of transfer learning 

in fields related to the categorization of bacteria [45], [46]:  

• Analysis of medical images: In the field of medical imaging, where large datasets are frequently 

required and substantial training data is needed for deep learning models, transfer learning has 

been applied widely.  

• Plant disease detection: Another field that has profited from transfer learning is the 

categorization of plant diseases using photos of the leaves.  

• Food safety and quality: Transfer learning has also been used for tasks involving food, such 

identifying food pollutants or classifying photos of food.  

• Microbial identification: There are instances of transfer learning being used to identify other 

microorganisms, such as fungus, even though it is not directly connected to the categorization 

of bacteria. 

This paper selected transfer learning for the following reasons [47]: 

• The researchers stated that they “leverage transfer learning to build models using pre-trained 

data” before applying their optimization techniques. 

• The researchers then fine-tune this pre-trained model on the specific task of bacterial species 

classification. 

• This transfer learning approach allows the model to benefit from the general image recognition 

capabilities it has learned from the pre-training dataset and adapt them to the target bacterial 

classification problem. 

• Transfer learning can significantly improve the performance and reduce the training time 

compared to training a model from scratch, especially when the target dataset (in this case, the 

bacterial images) is relatively small. 
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The following actions may be taken in order to apply transfer learning for the categorization of 

bacteria [46], [48]: 

1. Select a Pre-Trained Model  

• Select a pre-trained model that has been trained on a sizable dataset and is well-performing. 

• The generic image attributes that these pre-trained models have acquired can be used to the task 

of classifying microorganisms. 

2. Fine-Tuning the Pre-Trained Model 

• Remove the final classification layer(s) of the pre-trained model, as the original output classes 

do not match the bacteria classification task. 

• Add new fully connected layers at the end of the pre-trained model, with the final layer having 

a number of units equal to the number of bacteria classes in the target dataset. 

• Initialize the weights of the new fully connected layers randomly, while keeping the weights of 

the pre-trained convolutional layers frozen. 

• Train the model on the bacteria classification dataset, updating only the weights of the newly 

added layers. 

• This allows the model to fine-tune the pre-trained features to the specific bacteria classification 

task, leveraging the knowledge learned from the large-scale pre-training dataset. 

3. Layer Selection for Transfer 

• Choose the right pre-trained model depth to apply to transfer learning.  

• The pre-trained model's higher-level layers often capture more specialized, domain-dependent 

information, whereas the lower-level layers typically catch more general, domain-independent 

data.  

• As the traits unique to each bacteria are likely to be recorded in these levels, it is advised to 

refine the pre-trained model's higher-level layers for the purpose of classifying bacteria.  

• If the performance improves, you can gradually unfreeze more layers after fine-tuning only the 

last few. 

4. Handling Domain-Specific Features 

• Examine the dataset for the classification of bacteria to find any distinct, domain-specific 

features that the previously trained model could have missed.  

• Some bacteria, for instance, could have distinct colors, textures, or forms that aren't included in 

the pre-training dataset. In these situations, you may use data augmentation methods to improve 

the bacterium dataset and assist the model in learning these domain-specific characteristics, such 

as random rotations, flips, or custom transformations. 

• If the domain-specific characteristics change considerably from the pre-training dataset, you 

may also explore building a model from scratch or experimenting with other pre-trained models. 

5. Hyperparameter Tuning and Evaluation  

• To maximize the model's performance on the bacteria classification task, carefully adjust the 

hyperparameters, such as batch size learning rate, and number of epochs.  

• To evaluate the model's performance, use suitable assessment measures like accuracy, precision, 

recall, and F1-score.  

To guarantee the stability and generalizability of the model's output, take into account methods 

such as holdout validation or cross-validation. 
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3.2. Proposed Method 

The section that follows gives more information about the dataset that was used to train and 

evaluate the CNN models for classifying different types of bacteria. In this study, we will apply the 

Digital Images of Bacteria Species (DIBaS) Dataset to classify digital bacteria images. It was 

released by Zielinski et al. in their 2017 article [49]. The dataset is publicly available and composed 

diffrent bacterial species.  

Image Characteristics: 

• The DIBaS dataset consists of high-resolution microscopic images of various bacterial species. 

• The images were captured using standard staining techniques, such as Gram staining, to enhance 

the visual contrast and distinguish different bacterial morphologies. 

• The image resolution is reported to be 2048×1532 pixels, providing a level of detail suitable for 

CNN-based classification. 

Data Collection and Curation: 

• The DIBaS dataset was curated by researchers from multiple institutions, collecting samples 

from clinical settings, research laboratories, and existing bacterial image repositories. 

• The dataset was carefully reviewed and annotated to ensure accurate labeling of the bacterial 

species represented in each image. 

• Efforts were made to include a diverse range of clinically relevant and commonly studied 

bacterial species in the dataset. 

Dataset Size and Diversity: 

• The DIBaS dataset contains a total of 19,764 images across 50 different bacterial species. 

• This relatively large and diverse dataset provides a comprehensive resource for training and 

evaluating the performance of CNN models in bacterial species. Having a sizable dataset of 

images is crucial for effectively training and evaluating neural network models. In this section, 

the details of the dataset used in the study are discussed. 

The dataset employed in this paper consists of 2000 images depicting 12 distinct bacterial genera 

and species. To enable proper training and validation of the neural network models, the dataset was 

randomly divided into two subsets: 

• Training set: 70% of the 2000 images, totaling 1400 samples. 

• Validation set: 30% of the 2000 images, totaling 600 samples. 

This division allows the models to be trained on the training set and their performance to be 

evaluated on the validation set, which helps prevent overfitting. 

A basic random split of the dataset into training and validation sets raises questions regarding 

possible bias or variability. It is true that stratified sampling is a superior method for guaranteeing 

that classes are fairly represented in both the training and validation sets. The following are some 

ways to deal with this problem: stratified sampling, repeated random sampling, cross-validation and 

holdout test set. We may increase the model evaluation's robustness and dependability by putting one 

or more of these tactics into practice. This will guarantee that the performance metrics provided 

appropriately represent the model's actual capabilities and potential for generalization. 
 

Now we discuss the key data preprocessing techniques that can be important for a classification 

task involving bacteria images using Convolutional Neural Networks (CNNs) [50]. 

• The training images have been automatically resized using an enhanced image datastore. On 

training images, additional augmentation procedures have been implemented, such as random 

vertical axis flipping and random horizontal and vertical translation of up to 30 pixels. Data 



862 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 2, 2024, pp. 849-876 

 

 

Ahmed J. Abougarair (Deep Learning-Based Automated Approach for Classifying Bacterial Images) 

 

augmentation keeps the network from being overfit and from learning every nuance of the 

training pictures.  

• Rescale the supplied photos' pixel values to a standard range, such [0, 1] or [-1, 1]. This keeps 

big pixel values from controlling the network, which can aid in the model's performance and 

speedier convergence. 

• Utilize image processing methods to lessen the effect of noise or artifacts in the bacteria photos, 

such as median filtering or Gaussian smoothing. This can aid in the model's concentration on 

the pertinent elements for categorization. 

The training process involves updating the model's weights using a method called 

backpropagation. This was done with a learning rate of 0.0001 and a batch size of 64. The models 

were trained for 350 epochs, which represents the number of complete passes through the training 

data. The learning rate is a crucial hyperparameter that needs to be tuned carefully [51]. A high 

learning rate can lead to convergence issues, while a very low learning rate may cause the algorithm 

to get stuck in a suboptimal local minimum, leading to poor generalization [52]. 

In summary, this section outlines the details of the bacterial image dataset used in the study and 

the procedures for preparing the training and validation sets, as well as the training process and the 

importance of the learning rate hyperparameter. 

4. Simulation Results 

In this section, we will explore and analyze the process of applying transfer learning techniques 

to the AlexNet and GoogLeNet convolutional neural networks. The objective is to utilize these pre-

trained networks to classify different species of bacteria. Additionally, we will employ MATLAB 

R2023a to visualize the learned features and activations within the trained networks [53]-[56]. The 

results obtained from this analysis will be compared and evaluated to assess the effectiveness of the 

transfer learning approach in the context of bacterial species classification. Fig. 7 presents a 

flowchart outlining the key steps followed in this paper to classify various species of bacteria [57]. 

 

Fig. 7. Flowchart outlining the key steps followed to classify various species of bacteria   

• Load Data Set: The data set is loaded into memory. It is essential to divide the data into training 

set and the validation set. The training set is utilized to train the model, while the validation set 

is employed to assess the model's performance during the training process [49], [58]. 

• Split Data to Train & Validation: This step splits the training data into two sets: training and 

validation sets. The typical split is 70% training and 30% validation. 
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• Load AlexNet/GoogLeNet: This step loads the AlexNet or GoogLeNet model architecture. 

AlexNet and GoogLeNet are CNN that were trained on the ImageNet dataset. 

• Replace Layers for Transfer Learning: This step replaces some of the layers in the AlexNet or 

GoogLeNet model with new layers that are specific to the task that the model is being trained 

on.  

• Specify Training Option: This step specifies the training options, such as the learning rate, 

optimizer, and number of epochs. The learning rate controls how quickly the model learns, and 

the optimizer is the algorithm used to update the model parameters [59], [60]. 

• Train The Network: This step trains the model on the training data. 

• Visualize Learned Features & Activations: This step visualizes the features and activations that 

the model has learned. This can be helpful for understanding how the model is working. 

• Classifying the Validation Data to Test the Network: This step classifies the validation data 

using the trained model. This helps to evaluate the model's performance on unseen data [61]. 

AlexNet ConvNet model consist of the following: Input layer, five Convolution layers, three 

Max-Pooling layers, seven ReLU Activation function layers, two Normalization layers, three fully 

connected layers, two dropout layers, and SoftMax and Output layer [62]. 

GoogLeNet ConvNet model consists of the following layers: Input layer, multiple inception 

modules, composed of various convolutional, pooling, and activation layers, multiple auxiliary 

classifiers for intermediate supervision, global average pooling layer, fully connected layers, dropout 

layers and Softmax and output layer [63].  

Table 2 provides a concise comparison of AlexNet and GoogLeNet, highlighting their key 

features and distinguishing characteristics: 

Table 2.  Comparison of AlexNet and GoogLeNet networks structure 

Feature   AlexNet  GoogLeNet 
Architecture Deeper, more traditional CNN Inception modules, auxiliary classifiers 

Computation complexity Higher Lower 

Feature extraction Extracts features at different scales 
Extracts features from multiple 

dimensions 

Overfitting resistance More prone to overfitting Less prone to overfitting 

Performance Good on image classification tasks 
Better on image Net and other large-

scale tasks 

4.1. Replace Layers for Transfer Learning 

The In the case of the pre-trained networks AlexNet and GoogLeNet, the last three layers are 

initially designed to handle classification tasks. These layers need to be fine-tuned to suit the new 

classification problem. To achieve this, the process involves extracting all layers except the last three 

from the pre-trained network. By doing so, the network retains its foundational layers that capture 

general features from the initial training. These extracted layers are then transferred and integrated 

into the new classification task. To align the network with the specific problem of 12 classes, the last 

three layers are replaced with new layers that are customized to accommodate the desired number of 

classes. However, the last three layers in GoogLeNet and AlexNet serve different purposes and have 

distinct functionalities [64], [65]: 

1. AlexNet 

Fully Connected Layers: AlexNet also includes fully connected layers towards the end of the 

network. These layers learn high-level representations and perform the final classification. 

Dropout Layers: Dropout layers are utilized in AlexNet as a regularization technique to prevent 

overfitting. During training, dropout randomly sets a fraction of the input neurons to zero, forcing the 

network to learn redundant representations and increasing its robustness. 
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Softmax and Output Layer: Similar to GoogLeNet, AlexNet applies the softmax activation 

function to the output of the fully connected layers to generate class probabilities. The output layer 

represents the final predictions. 

To summarize, while both GoogLeNet and AlexNet include fully connected layers and a softmax 

output layer, GoogLeNet incorporates a global average pooling layer to reduce spatial dimensions 

before classification. Additionally, AlexNet incorporates dropout layers to regularize the network and 

prevent overfitting.  

2. GoogLeNet 

Global Average Pooling Layer: This layer performs spatial pooling by taking the average of each 

feature map's values, reducing the spatial dimensions to a single value per feature map. It aids in 

capturing global contextual information and reducing the spatial dimensions before the final 

classification. 

Fully Connected Layers: These layers are responsible for learning high-level representations and 

making predictions. They take the output of the previous layer and connect each neuron to every 

neuron in the subsequent layer. In GoogLeNet, these fully connected layers are typically followed by 

a softmax activation function to generate class probabilities. 

Softmax and Output Layer: The softmax activation function is applied to the output of the fully 

connected layers to produce a probability distribution over the classes. The output layer represents the 

final predictions, where each neuron corresponds to a specific class, and the highest activation 

indicates the predicted class. Fig. 8 shows the Alexnet’s last 3 layers before and after fine-tuning. Fig. 

9 illustrates the Googenet’s last 3 layers before and after fine-tuning. 

 

Fig. 8. Alexnet transferred layers 

 

Fig. 9. Googlenet transferred layers 
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4.2. Network Training  

The training progress for the AlexNet network is visualized in Fig. 10, while the training progress 

for the GoogLeNet network is depicted in Fig. 11. These figures consist of two distinct curves, each 

representing different aspects of the training process. The first curve in both figures represents the 

accuracy per iterations or epoch. This curve quantifies the performance of the network by measuring 

its accuracy in correctly classifying the data samples during each iteration or epoch. It provides 

insights into how well the network is learning and improving over time. The second curve in both 

figures represents the losses per iterations or epoch. This curve indicates the amount of error or loss 

incurred by the network during each iteration or epoch. It reflects the discrepancy between the 

predicted outputs of the network and the actual ground truth labels. Monitoring this curve is essential 

for assessing the convergence and effectiveness of the training process [66], [67]. 

AlexNet 

• Epoch 1-2: AlexNet rapidly learns the basic features of the bacteria images, leading to a 

significant decrease in training loss and a sharp increase in validation accuracy. 

• Epoch 3-5: As AlexNet continues to learn more complex features, the training loss plateaus, and 

the validation accuracy increases gradually. 

• Epoch 6-8: Overfitting starts to occur, causing the training loss and validation accuracy to plateau, 

indicating that the model is memorizing the training data rather than generalizing to unseen 

images. 

Despite its simplicity, AlexNet, a convolutional neural network, quickly grasps the fundamental 

features of bacteria images during the initial training epochs. However, AlexNet's susceptibility to 

overfitting causes the validation accuracy to plateau early on, hindering its generalization 

performance. Key observations from the training process: 

1. AlexNet's rapid decrease in training loss during the initial epochs indicates its ability to quickly 

grasp the fundamental features of bacteria images. 

2. AlexNet's initial surge in validation accuracy followed by a plateau suggests its capacity to learn 

accurate bacteria classification but also its vulnerability to overfitting. 

3. The convergence of both training loss and validation accuracy after 8 epochs signals that the 

model has reached its optimal learning state. 

To mitigate AlexNet's overfitting tendency, early stopping is crucial to prevent the model from 

over-adapting to the training data, thereby enhancing its generalization capability. 

AlexNet demonstrates proficiency in classifying bacteria images with minimal training time, but 

careful monitoring and early stopping are essential to combat its overfitting tendency and achieve 

improved generalization performance. 

GoogLeNet 

• Epoch 1-3: GoogLeNet's inception modules and auxiliary classifiers enable efficient feature 

extraction and reduce overfitting risk, leading to a rapid decrease in training loss and a 

corresponding increase in validation accuracy. 

• Epoch 4-10: GoogLeNet refines its feature representations, causing the training loss to gradually 

decrease and the validation accuracy to steadily increase. 

• Epoch 11-20: While the training loss plateaus, the validation accuracy continues to increase 

slowly, demonstrating GoogLeNet's ability to generalize effectively without overfitting. 

• Epoch 21-30: The training loss and validation accuracy both plateau, indicating that the model 

has converged. 
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Despite its computational complexity, GoogLeNet, a more sophisticated network than AlexNet, 

exhibits reduced overfitting susceptibility, allowing for extended training up to 30 epochs without 

incurring overfitting limitations. Key observations from the training process: 

1. GoogLeNet's gradual decrease in training loss throughout the training process indicates its ability 

to continuously refine its understanding of the bacteria images, extracting increasingly complex 

and invariant features. 

2. GoogLeNet's steady increase in validation accuracy throughout the training process suggests its 

effectiveness in generalizing to unseen bacteria data. 

3. The convergence of both training loss and validation accuracy after 30 epochs signals that the 

model has reached its optimal learning state. 

The overall training process of GoogLeNet for bacteria classification demonstrates its capability 

to accurately classify bacteria images with ample training time of 30 epochs. Additionally, its reduced 

susceptibility to overfitting makes it a favorable choice for bacteria classification tasks.  

GoogLeNet proves to be a robust and accurate classifier for bacteria images due to its ability to 

continuously learn complex features and its reduced overfitting tendency compared to AlexNet. 

 

Fig. 10. Training progress for Alexnet network 

Table 3 summarizes the key differences between the training processes for AlexNet and 

GoogLeNet. GoogLeNet outperforms AlexNet on bacteria classification, achieving a higher final 

validation accuracy and demonstrating less overfitting tendency. 

Table 3.  Comparison of alexnet and googlenet networks training process 

Feature AlexNet GoogLeNet 

Training loss progression Rapid decrease, then plateau 
Gradual decrease over all 

epochs 

Validation accuracy progression 
Rapid increase, then plateaus, 

then slow increase 
Gradual increase over all epochs 

Overfitting tendency More prone to overfitting Less prone to overfitting 

Final validation   accuracy 96.1% 98.7% 

Computational complexity Higher Lower 

Feature extraction capabilities 
Extracts features at different 

scales 

Extracts features from multiple 

dimensions 

Overall performance 
Good on image classification 

tasks 

Better on ImageNet and other 

large-scale tasks 
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Fig. 11. Training progress for Googlenet network 

4.3. Visualize Activations 

In this section, we analyze the behavior of a convolutional neural network by feeding it a testing 

image and observing the activations at different layers of the network [68]. The testing example used 

in this analysis is an image of Candida albicans, a species of bacteria, as shown in Fig. 12. To perform 

this analysis, we input the Candida albicans image into the convolutional neural network. As the image 

propagates through the network, each layer performs a series of convolutions, activations, and pooling 

operations to extract and transform features. At each layer, we capture and examine the activations, 

which represent the response of the network to specific patterns and structures in the input image [69], 

[70]. 

 

Fig. 12. Candida albicans bacteria 

By examining the activation areas in the convolutional layers and comparing them to the 

corresponding regions in the original images, we can investigate the features learned by a 

convolutional neural network. This involves analyzing which areas become active when an image is 

processed by the network and comparing those areas to the relevant parts of the original image. 

Through this investigation, we can gain insights into how the network detects and represents important 
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features in the input images. In Fig. 13, the activations of the initial and final convolutional layers in 

both AlexNet and GoogleNet are depicted. This visualization allows us to observe the response 

patterns within these layers and gain insights into how the networks process the input data.  The initial 

convolutional layer of both networks produces activations that are highly localized and responsive to 

low-level features such as edges and orientations.  

This is not surprising, as these features are essential for building a foundation for more complex 

feature extraction in subsequent layers. The final convolutional layer of both networks produces 

activations that are more global and responsive to higher-level features such as textures and shapes. 

This is because the final convolutional layer is the culmination of many layers of feature extraction, 

and it is able to leverage the activations of all previous layers to generate a comprehensive 

representation of the input image. 

 

Fig. 13. Convolution layers activations  

Fig. 14 showcases the strongest activation channels compared to the input image, can provide 

valuable insights into the features that are most salient and influential in the classification or analysis 

process. The image shows that the strongest activations are concentrated in the foreground of the 

image, where the Candida albicans cells are located. This suggests that the network is paying close 

attention to the morphological features of the cells, such as their shape, size, and arrangement. This is 

not surprising, as these features are essential for distinguishing Candida albicans from other bacteria 

species.  

The figures show that convolutional neural networks (CNNs) learn to detect different types of 

features at different depths in the network. In the early layers, CNNs learn to detect simple features 

like edges and colors. In the deeper layers, CNNs learn to detect more complex and detailed features, 

such as textures and shapes. The later layers in the network build their features by combining features 

from earlier layers. This is why the channels in the later layers have stronger activations than the 

channels in the early layers. The stronger activations indicate that the network has learned more 

features from the input image. 
 

4.4. Rectified Linear Unit (ReLU) Layer Effect 

By comparing the activation patterns in the last convolutional layer and the followed ReLU 

activation function layer in AlexNet and GoogleNet as shown in Fig. 15, some notable differences can 
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be observed. In AlexNet, the activations in the relu5 layer are more localized, indicating its strength 

in extracting low-level features such as edges and orientations. On the other hand, GoogleNet's 

inception_5b-3x3_relu layer shows activations that are more global, suggesting its proficiency in 

extracting high-level features like textures and shapes. 

These differences can be attributed to the architectural variances between the two networks. 

AlexNet is a shallower network with fewer layers, enabling it to extract features from a smaller 

receptive field and focus on localized features. In contrast, GoogleNet's deeper architecture allows it 

to extract features from a larger receptive field, facilitating the capture of more global features.  

Additionally, the overall appearance of the activation images differs between the two networks. 

AlexNet's relu5 layer exhibits more noise in the activations, possibly due to its traditional pooling 

layer, which can introduce noise. Conversely, GoogleNet's inception_5b-3x3_relu layer, which 

employs an inception module, shows reduced sensitivity to noise. 

 

Fig. 14. Strongest activation channels 

The ReLU activation function used in both AlexNet and GoogleNet plays a crucial role. By 

discarding negative activations, the function allows the networks to focus on positive activations and 

learn more complex patterns in the data. This enhances the networks' ability to extract important 

features and ignore less significant ones. The last convolutional layer and the subsequent ReLU 

activation function layer in AlexNet and GoogleNet are responsible for extracting high-level features 

in the input image. The ReLU activation function aids in making these features more non-linear and 

expressive, facilitating the learning of complex patterns and making accurate predictions. In summary, 

the activation patterns and the utilization of ReLU activation functions highlight the distinctive 

characteristics and strengths of AlexNet and GoogleNet in feature extraction and pattern recognition. 

Fig. 16 and Fig. 17 shows the confusion matrix of both the networks results. 

Table 4 summarizes a comparison of the confusion matrices for CNN comparasion. In all four 

criteria, as you can see, GoogleNet performs better than AlexNet. This is due to the fact that 

GoogleNet can recognize more intricate patterns in the data than AlexNet can since it is a deeper and 

more complex network. GoogleNet outperforms AlexNet in almost all classes. The only exception is 

the Lactobacillus class, where AlexNet has a slightly higher accuracy. However, this is likely due to 

the small number of Lactobacillus images in the dataset. Overall, the comparison of the two confusion 

matrices shows that GoogleNet is a more powerful classification model than AlexNet. It is able to 

classify a wider range of images with greater accuracy. 



870 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 2, 2024, pp. 849-876 

 

 

Ahmed J. Abougarair (Deep Learning-Based Automated Approach for Classifying Bacterial Images) 

 

 

Fig. 15. ReLU layer effect  

Fig. 16. CNN Comparison  

Model Training Accuracy 
Time 

(minute) 
Precision Recall F1 Score MSE 

Purposed Method 

AlexNet 
96.1 14.6 98.3 98.3 98.7 0.00813 

Purposed Method 

GoogLeNet 
98.7 19.52 99.5 99.5 99.45 0.00351 

Resnet8 [9] 98.3 9.45 99.1 99.1 98.91 0.00473 

VGG16 [10] 97.65 40.13 98.7 98.6 98.65 0.00751 

SqueezeNet [11] 98.1 7.05 99.5 99.5 99.8 0.00851 

 

 

Fig. 17. AlexNet's confusion matrix  
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Fig. 18. GoogleNet's confusion matrix 

5. Conclusion 

Bacterial categorization is an area where machine learning techniques have seen significant use. 

The use of these methods has enhanced the discipline of microbiology. Microbiologists benefit from 

machine learning (ML) techniques in a variety of ways, including the identification and categorization 

of bacteria as well as the general automation of these procedures. In this study, the application of 

transfer learning to the classification of bacteria using two well-known CNN architectures—

GoogLeNet and AlexNetis shown. The bacteria were trained and evaluated to identify DIBaS pictures. 

The bulk of the primary research employ academic datasets, according to the results as well. In 

addition, the most often utilized performance assessment criteria were recall, accuracy, precision, F1-

score, and confusion matrix. Researchers can benefit from this study since it helps to find areas in 

which they can make contributions. The training procedure takes between 14.6 and 19.52 minutes, 

with results in the range of 96.1% to 98.7% for accuracy and validation. The best accuracy errors were 

found at MSE 0.00351. Transfer learning with GoogLeNet emerges as a powerful tool for bacteria 

classification, offering improved accuracy and efficiency compared to transfer learning with AlexNet. 

Its deeper architecture, enhanced feature extraction capability, and reduced computational complexity 

make GoogLeNet a valuable asset for automating microbiology diagnostics, facilitating faster and 

more accurate identification of bacteria species, and ultimately aiding in disease prevention and 

treatment. Subsequent research endeavors ought to employ microscopic slide images procured from 

multi-center laboratories and employ DenseNet201 or another deeper model for training. 

6. Limitations and Future Work 

One disadvantage of our suggested technique with regard to the dataset utilized is that, while it 

showed encouraging results for the DIBaS dataset used in this work, its performance could vary when 

applied to other datasets. This variation can be linked to the distinct qualities and difficulties that 

different datasets bring, which may not coincide with the particulars of the DIBaS dataset.  

Our study might be expanded to include a wider variety of datasets than only the DIBaS dataset 

as a possible direction for future research. This addition would solve the constraint of possible 

performance variability identified previously and enable us to evaluate the resilience and adaptability 

of our suggested strategy across datasets with different characteristics and problems. We may learn 

more about the generalizability and efficacy of the technique in various circumstances by examining 

a variety of datasets. More training data may yield a greater resilience and accuracy for the purposes 
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of training a deep learning architecture. Subsequent research in this field can entail developing a 

different dataset specifically tailored for the application or using a more sophisticated data 

augmentation technique. Moreover, the models investigated in this work mostly depend on modifying 

the architectures and architectures of conventional CNNs. With the incorporation of image processing 

techniques like vision transformers, deep learning networks are already exhibiting advances in their 

structure and layout as the fields of deep learning and image processing advance. A comparison study 

may be helpful in determining optimality with reference to industry-specific applications when newer, 

more sophisticated algorithms are created. 
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