
IJRCS 
International Journal of Robotics and Control Systems 

 
Vol. 4, No. 2, 2024, pp. 758-778 

ISSN 2775-2658 

http://pubs2.ascee.org/index.php/ijrcs 

 

 

       http://dx.doi.org/10.31763/ijrcs.v4i2.1379 ijrcs@ascee.org   

  

Revolutionizing Anemia Classification with Multilayer 

Extremely Randomized Tree Learning Machine for 

Unprecedented Accuracy 

Dimas Chaerul Ekty Saputra a,1,*, Elvaro Islami Muryadi b,c,2, Irianna Futri d,3, Thinzar Aung Win e,4 

Khamron Sunat a,5, Tri Ratnaningsih f,6 

a Department of Computer Science, College of Computing, Khon Kaen University, Khon Kaen 40002, Thailand 
b Department of Community, Occupational, and Family Medicine, Faculty of Medicine, Khon Kaen University, Khon 

  Kaen 40002, Thailand 
c Department of Public Health, Faculty of Health Sciences, Adiwangsa Jambi University, Jambi 36138, Indonesia 
d Department of International Technology and Innovation Management, International College, Khon Kaen University, 

  Khon Kaen 40002, Thailand 
e Department of Information Technology, Stamford International University, Bangkok 10250, Thailand 
f Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Gadjah 

  Mada University, Yogyakarta 55281, Indonesia 
1 dimaschaerulekty.s@kkumail.com; 2 elvaroislamimuryadi.e@kkumail.com; 3 irianna.f@kkumail.com;  

4 thinzaraung.win@stamford.edu; 5 skhamron@kku.ac.th; 6 triratnaningsih@ugm.ac.id 

* Corresponding Author 

 

ARTICLE INFO  ABSTRACT 

 

Article history 

Received April 01, 2024 

Revised May 01, 2024 

Accepted May 24, 2024 

 Anemia is a prevalent global health issue that is characterized by a deficit 

in red blood cells or low levels of hemoglobin. This condition is influenced 

by various causes, including nutritional inadequacies, chronic diseases, and 

genetic predisposition. The incidence of the phenomenon exhibits variation 

across different geographical regions and demographic groups. This 

pioneering research investigates the identification and classification of 

anemia, potentially leading to transformative advancements in the 

discipline. The classification of anemia encompasses four distinct groups, 

namely Beta Thalassemia Trait, Iron Deficiency Anemia, Hemoglobin E, 

and Combination. This comprehensive categorization offers clinicians a 

more refined and detailed comprehension of the condition. The integration 

of deep learning and machine learning in the Multilayer Extremely 

Randomized Tree Learning Machine (MERTLM) model represents a 

departure from traditional approaches and a significant advancement in the 

field of medical categorization accuracy. The MERTLM approach 

integrates randomized tree with multilayer extreme learning machine (M-

ELM) representation learning, hence emphasizing the possibility of 

interdisciplinary collaboration in the field of diagnostics. In addition to its 

impact on anemia, artificial intelligence (AI) is playing a significant role in 

revolutionizing medical diagnosis by emphasizing the integration of 

innovative methods. This study utilizes the combined capabilities of 

machine learning and deep learning to improve accuracy. Notably, recent 

developments have resulted in an exceptional accuracy rate of 99.67%, 

precision of 99.60%, sensitivity of 99.47%, and an amazing F1-Score of 

99.53%. This study represents a significant advancement in the field of 

anemia research, providing valuable insights that may be applied to 

intricate medical issues and enhancing the quality of patient care. 
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1. Introduction 

Anemia is a significant public health issue that affects populations worldwide [1]. It not only 

affects physical health but also impairs cognitive and physical abilities, productivity, and overall 

quality of life [2]. According to the World Health Organization (WHO), approximately 25% of the 

global population, equivalent to around 1.62 billion people, experience the effects of anemia [3], [4]. 

Developing nations, specifically pregnant females, minors, and individuals with chronic ailments, 

experience an inequitable share of the burden [5], [6]. Accurate categorization of different subtypes 

of anemia is crucial for the implementation of effective treatment strategies. However, conventional 

approaches frequently encounter difficulties, resulting in erroneous classifications and substandard 

healthcare provision [7], [8]. The complex interplay of various causative factors, including 

malnutrition and genetics, increases the intricacy of classifying anemia, necessitating customized 

approaches for diagnosis and treatment [9]. 

Furthermore, the dependence of conventional methods on the manual interpretation of laboratory 

results, which is susceptible to human error, underscores the need for innovative and automated 

approaches to ensure precise classification [10]-[16]. In consideration of this matter, a scholarly 

investigation conducted by [17] shed light on the significance of hemoglobin, a crucial molecule found 

in red blood cells, in the process of oxygen transportation. Sickle cell disease perturbs the equilibrium, 

causing a transformation of previously pliable cells into distorted shapes that impede the flow of blood, 

resulting in a series of health complications [18]. 

Timely identification is a feasible approach to progress in this circumstance. Timely detection of 

sickle cell disease enables the creation of personalized treatments; nevertheless, manual assessment is 

both laborious and susceptible to mistakes [19], [20]. The algorithm for the multilayer perceptron 

classifier is a revolutionary solution that effectively detects sickle cells using various methods. A 

differentiation exists among the three categories of erythrocytes, namely normal (N), sickle cell (S), 

and thalassemia (T) [21], [22]. The fundamental objective of validation is to assess the accuracy of 

the algorithm. The program engages in competition within the domains of mining and machine 

learning by leveraging a dataset sourced from the Thalassemia and Sickle Cell Society. The narrative 

around the interplay between hemoglobin and sickle cell disease is evolving in conjunction with 

scientific progress. The multilayer perceptron classifier method, under the guidance of data mining 

experts, enhances the quality of diagnostics and patient care by facilitating speedy and precise 

identification [23].  

The stage undergoes a shift, drawing attention to an exceptional partnership between microfluidic 

technology and machine learning [24]. This union creates an advanced clinical diagnosis system that 

deeply comprehends cellular behavior. For rare hereditary hemolytic anemia (RHHA), a microfluidic 

device mimics the spleen's role in eliminating faulty red blood cells. Video data analysis enhances our 

grasp of RHHA within this framework. This innovation strives to enhance diagnostics and RBC 

deformability assessment, achieved through precise 2D alignment and narrow passages, revealing 

their endurance. Collaboration encompasses the majority voting scheme and maximum sum of scores, 

skillfully interlacing analysis. At the peak of technology, a robust platform emerges, distinguishing 

healthy individuals from RHHA patients. The integration of microfluidic precision and machine 

learning advances clinical diagnostics, enabling intelligent decision-making and comprehensive 

patient care [25]. 

Anemia's hidden presence, hindered by invasive methods and financial constraints, finds a 

solution by merging cutting-edge medical tech with machine learning. The innovation could mitigate 

anemia risks, altering its trajectory and impact. As machine learning advances, anemia detection could 

transform, enabling proactive intervention and better patient outcomes [26]. Various other 

examinations merit consideration, including red blood cell (RBC) assessments, hemoglobin (Hb) 

measurements, hematocrit (HCT) levels, mean corpuscular volume (MCV) analysis, mean 

corpuscular hemoglobin (MCH) evaluation, mean corpuscular hemoglobin concentration (MCHC) 

assessment, and red-cell distribution width (RDW) measurements [27].  
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This study seeks to employ the Multilayer Extremely Randomized Tree Learning Machine 

(MERTLM) to tackle the classification of various forms of anemia. This study provides significant 

contributions in three key aspects: 

1. The utilization of the MERTLM approach is proposed in this study to develop a unique 

classification model that integrates machine learning and deep learning techniques. This model 

incorporates randomized trees and multilayer extreme learning machines to classify anemia. 

2. It is advisable to retain the factors considered throughout the classification process, even if their 

influence on the dataset is minimal. 

3. Presenting various categorization models incorporating many independent factors. 

The present paper is structured into five distinct sections. Section 1 serves as an introductory 

segment that provides an overview of the problem's background, outlines the objectives, and 

highlights the research contributions. Section 2 encompasses a comprehensive examination of existing 

literature. Section 3 provides a comprehensive description of the materials and procedures employed 

in the study. Section 4 provides an account of the research findings and comprehensively analyzes and 

interprets these results. Section 5 of this study encompasses the conclusions drawn from the findings 

and provides ideas for future research endeavors. 

2. Literature Review 

After doing a study using VOSViewers and obtaining article data from SCOPUS, which 

consisted of 103 publications, it is evident that there is a substantial body of research on the 

intersection of anemia and machine learning. Furthermore, it is accurate to assert that there exists a 

substantial amount of study on anemia that utilizes deep learning techniques, however the scope of 

this research is limited. One plausible hypothesis for the observed phenomena is the ambiguous 

association between anemia and significant cognitive capacity. Notwithstanding the existence of a 

conducted study about the pragmatic implementation of artificial intelligence in the management of 

anemia, the differentiation between these two concepts remains ambiguous. Upon examining the latest 

journal updates, it is evident that the subject of deep learning has been extensively examined in 

connection with anemia. Fig. 1 illustrates the advancement of research on anemia, specifically 

highlighting the use of machine learning, deep learning, and artificial intelligence. However, Fig. 2 

displays the patterns of anemia research, categorized by the years of study. The available data indicates 

that the field of anemia research utilizing artificial intelligence is still in its nascent stages of 

development. 

 

Fig. 1. VOSViewer analysis based on keywords 
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Fig. 2. VOSViewer analysis based on years 

Bioinformatics [28] is a rapidly expanding discipline that focuses on predicting clinical outcomes 

through the use of profiling datasets with numerous variables. Several classification techniques, such 

as the Random Forest method and protein-protein interaction feature graphs, have been devised by 

taking into account the functional relationships between features. However, in addition to utilizing 

gene expression data, these methodologies frequently require external data that may not be provided 

or may be incomplete. To tackle this particular difficulty, a novel approach is suggested. This approach 

involves the utilization of a forest-based "feature detector" that incorporates deep neural networks 

(DNN). The objective of this approach is to develop a classifier that is both resilient and capable of 

identifying sparse correlations among features inside vast feature spaces. 

Although DNN classifiers have demonstrated their efficacy in classification problems, it is a 

rational decision to construct a supervised feature detector on top of DNN classifiers when the 

objective is to achieve sparse learning with a decreased parameter count. There are two main reasons 

why random forests are preferred over alternative models. First and foremost, the Random Forest (RF) 

model, being an ensemble model, can generate prediction outcomes by aggregating the predictions of 

its base learners, rather than relying on a single projected probability score. Additionally, the method 

of assessing the significance of features in each base learner is a basic procedure. In contrast to support 

vector machines and logistic regressions, this initial element enables the advancement of downstream 

DNN after the feature detector. This opportunity is not available if the detector produces only a single 

prediction [28], [29].  

The second aspect facilitates feature evaluation for the entire integrated model, in contrast to 

other classifiers that may not inherently incorporate mechanisms for feature selection. No work has 

been conducted to date along this path for gene expression data. Nevertheless, the concept of layering 

classifiers has been implemented and is now widespread in traditional machine learning research. 

A study by [30] presented a computational imaging framework that employs a hybrid 

architecture, integrating deep and ensemble learning techniques. The objective of this framework is 

to accomplish reliable detection of blood vessels in fundus color images. To identify vessels within 

the photos, a two-step technique is employed. In the first stage, a deep neural network (DNN) is 
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utilized to do unsupervised learning to create vessel dictionaries. This approach employs sparsely 

trained denoising auto-encoders (DAE). Following that, the response of the deep neural network 

(DNN) is further enhanced through the application of supervised learning techniques, specifically 

utilizing a random forest algorithm. The success of this approach is demonstrated by its examination 

using the DRIVE database, where it achieves a maximum average accuracy of 0.9327 and an area 

under the ROC curve of 0.9195 for vessel detection.  

Fundus imaging is extensively utilized as a primary method for the early detection and diagnosis 

of a range of disorders, including as anemia, diabetic retinopathy, glaucoma, age-related macular 

degeneration, hypertension, and stroke-induced changes [31]-[36]. The utilization of retinal image 

analysis has made a substantial impact in reducing the inconsistency in reporting across several 

observers and even within the same observer, owing to developments in imaging technology. These 

technological improvements have played a crucial role in mitigating such variability. The primary 

objective of the suggested methodology is to address the problem of bias in feature representation 

caused by subjectivity, which has a detrimental impact on the effectiveness of tissue characterization 

(TC) techniques. The method achieves this by employing unsupervised learning techniques to 

delineate regions of vessels and nonvascular tissues using available data, and by investigating 

representations that are particular to the tissue of interest for tumor classification [37]. The present 

study provides a full description of the hybrid deep neural network-random forest (DNN-RF) 

architecture employed for vessel detection, along with a concise overview of the research outcomes. 

Despite being slightly less advanced than the current state-of-the-art approaches that utilize heuristic 

features, this method demonstrates consistent performance and the capability to identify both general 

and detailed structures. As a result, it presents a viable solution for addressing the constraints 

associated with heuristic-dependent and data-driven methods in the analysis of medical images [26], 

[30]. 

Cancer is a multifaceted ailment characterized by the aberrant proliferation of cells, their 

infiltration into surrounding tissues, and their dissemination through the bloodstream and other bodily 

tissues in human beings [38]. Understanding the genetic components of cancer is crucial in order to 

achieve precise diagnosis and efficacious treatment. In the field of cancer research, next-generation 

sequencing techniques have been utilized to examine various genetic alterations in cancer genomes. 

Extensive investigations into the genomes of cancer have revealed that the genetic changes frequently 

exhibit variations contingent upon the specific form of cancer. The study conducted by Lawrence et 

al. revealed that there is significant variation in the mutations discovered in genes relevant to different 

types of cancer. This finding underscores the distinctiveness of mutations observed in various 

categories of cancer [39]. 

A study by [40] confirms that the key criteria used to classify different forms of cancer are mostly 

based on the distinct genetic features exhibited by the respective tissues under investigation. 

Furthermore, variations in somatic copy numbers and mutation patterns exhibit discernible patterns 

depending on the specific tissue type. To tackle these issues, this study introduces a novel cancer 

classification approach known as the Cancer Predictor utilizing an Ensemble Model (CPEM). The 

construction of CPEM involves the integration of sophisticated machine learning algorithms with a 

diverse range of somatic abnormalities observed in different types of malignancies, together with the 

corresponding attributes that these modifications produce. The study authors performed a thorough 

examination of gene-level mutation profiles, mutation rates, mutation patterns, signatures, and gene-

level copy number alterations to evaluate their influence on the accuracy of the classifier. Moreover, 

the research conducted a more comprehensive investigation of the efficacy of advanced machine 

learning classifiers in the context of feature selection and cancer classification. 

The approach being suggested represents the most precise technique currently available for the 

classification of various types of cancer. It encompasses the whole range of cancer types documented 

in the TCGA database. The present study evaluated the efficacy of four frequently employed machine 

learning classifiers, namely random forests, one-vs-rest support vector machines (SVM), k-nearest 

neighbors (KNN), and fully connected deep neural networks (DNN). The objective was to identify 
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the most optimal classifiers for integration into an ensemble model. Furthermore, the researchers 

undertook a comprehensive examination of the associations between the outcomes produced by these 

classifiers. In the realm of cancer research, the widespread availability of DNA sequencing tools has 

led to significant progress in the quick capture of comprehensive genomic data. However, the 

escalating magnitude and intricacy of this data present noteworthy obstacles for classification 

endeavors. This study examines the impact of different input variables, including mutation profiles, 

mutation rates, mutation patterns and signatures, and somatic copy number variations, on the accurate 

classification of cancer types [40]. 

3. Method 

3.1. Data Collection 

During this study, a comprehensive examination was conducted on 423 individuals who had been 

diagnosed with various types of anemia and were in the Special Region of Yogyakarta, Indonesia. 

Data pertaining to anemia were collected over three years, beginning in 2021 and ending in 2023. The 

procedure of data collection was carried out through a cooperative effort between the Department of 

Clinical Pathology and Laboratory Medicine at the Faculty of Medicine, Public Health, and Nursing 

of Universitas Gadjah Mada and the Clinical Pathology Laboratory at Dr. Sardjito Hospital in 

Yogyakarta, Indonesia. The major purpose of this research was to investigate the hematological 

characteristics of individuals who have been identified as having either Beta-Thalassemia Trait (BTT), 

Iron Deficiency Anemia (IDA), Hemoglobin E (HbE), or a combination of two kinds of disease (BTT 

and IDA or HbE and IDA). A stringent adherence to ethical procedures was maintained throughout 

the investigation. This was done following the guidelines that were established by the Medical and 

Health Research Ethics Committee (MHREC) of the Faculty of Medicine, Public Health, and Nursing 

at Gadjah Mada University - Dr. Sardjito Central General Hospital. A one-of-a-kind reference number, 

KE/FK/0376/EC/2023, was designed specifically for the investigation. In the period before this one, 

the reference number that was utilized was KE/FK/1255/EC/2021. The information that was gathered 

from the 423 patients was instantly entered into a model that was already in place and utilized 

MERTLM, which resulted in accuracy in the categorization outcomes. The parameters and profiles of 

the research data are presented in Table 1, which exhibits the laboratory examination profiles. 

Table 1.  List of laboratory examination parameters and profiles of research data 

Parameter Abbreviation Unit 

Data Profile 

Minimum Maximum Average 
Standard 

deviation 

Red Blood Cell RBC 
million

/mcL 
2.7 7.1 5.1 0.6 

Hemoglobin Hb g/dL 6.3 17.6 13.2 1.7 

Hematocrit HCT % 20.1 52.6 40.1 4.5 

Mean Corpuscular 

Volume 
MCV fl 54.6 95.2 79.7 8.5 

Mean Corpuscular 

Hemoglobin 
MCH pg/cell 16.7 34.0 26.2 3.3 

Mean Corpuscular 

Hemoglobin 

Concentration 

MCHC g/dL 28.0 90.0 33.0 2.8 

Red-Cell Distribution 

Width 
RDW % 11.4 27.9 15.1 2.0 

 

3.2. Research Flow 

The laboratory's hematology analyzer generates seven primary characteristics from the data 

acquired from a comprehensive blood test. The data that has been obtained must be tested further 

using serum ferritin to get the gold standard from IDA and Hemoglobin Electrophoresis to obtain the 

gold standard from BTT and HbE. Based on Fig. 3, the amount of data processed for further testing 
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will be entered into the database. In the database, there will be seven features that are processed. Data 

labeling is carried out by doctors who are specialists in clinical pathology. After the data enters the 

database, then the data will be pre-processed. Initial processing includes data cleaning, deletion, 

MinMax Scaler, and LabelEncoder. Upon completion of the preliminary processing stage, the data 

will be partitioned into two distinct subsets: 80% of the data will be allocated for training purposes, 

while the remaining 20% will be reserved for testing. The training data will conduct training using the 

MERTLM Algorithm. The training data that has undergone training is the data that will become the 

benchmark for the test data to get a class. The doctor's role here is to provide courses on training data 

on the results of testing in the laboratory. Test data that has got a class using the MERTLM Algorithm, 

then the performance testing of the MERTLM algorithm is carried out. After getting the performance 

results, the results will be reviewed again by the doctor as transparent accountability for the model 

results and classification results by a doctor specializing in clinical pathology. 

 

Fig. 3. Research flowchart 

3.3. Proposed Model: Multilayer Extremely Randomized Tree Learning Machine 

The MERTLM model consists of two distinct components. Using the Stacking technique 

between Machine Learning, namely Randomized Tree, and Deep Learning, namely extreme learning 

machine (ELM), this method is proposed. Regular ELM employs a single hidden layer feedforward 

neural networks (SLFNs) rather than multiple hidden layers [41]-[43]. In this study, however, it was 

transformed into a Multilayer hidden layer feedforward neural network, subsequently dubbed the 

multilayer extreme learning machine (M-ELM) [44], [45].  
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While the forest section of the randomized tree serves as the initial classifier to identify the pattern 

representation of the raw input data by observing the training results, the M-ELM section serves as 

the learner to predict the results by employing the newly discovered result representation by the 

randomized tree. This responsibility is carried out by the network as a whole. These two components 

are essential to the model's overall functionality [46].  

During the forest phase, separate decision trees are generated, transforming the forest into a 

random forest of trees. Therefore, the random tree model is a natural choice for generating forests. In 

addition, a variety of forest architectures are conceivable. For instance, if the feature space is sorted 

and known, one can employ network-guided forests or rapidly generate forests by aggregating trees. 

Both options are accessible if the feature space is known. 

The only form of outcome detector utilized in this investigation is the randomized tree. The 

MERTLM classifier training consists of two segments. In the first phase, labeled training data is used 

to match the forest, and in the second step, predictions from each tree are used to train the fully 

connected M-ELM [46], [47]. Forests are matched against labeled training data in the initial stage 

[28]. The first stage involves matching forests with the aid of labeled training data. After undergoing 

a two-stage training procedure, the forest is implemented, and when given the test sample, M-ELM 

will provide test predictions using the test sample for the entire model. 

The MERTLM model views forest 𝐹 as a collection of randomized trees adapted from [28] 

organized in the following manner: 

 𝐹(𝜃) = {𝐽𝑚(𝜃𝑚)}, 𝑚 = 1,2,3, … , 𝑀, (1) 

where 𝑀 is the total number of trees in the forest, 𝜃 = {𝜃1, 𝜃2, 𝜃3, … , 𝜃𝑀} reflects the parameters inside 

𝐹 within random forest, 𝜃 involves dividing variables and their corresponding values. While 

identifying characteristics, 𝑀 conforms to the training data 𝑋 and 𝑦, where 𝑋 ∈ 𝑅𝑛×𝑝, 𝑛 samples and 

𝑝 characteristics comprise the input data matrix. 𝑦 ∈ 𝑅𝑛 is the result vector containing the label for 

categorization. Through the appropriate woodland for observation 𝑥𝑖, In Equation (1), we extract the 

forecast from each tree in 𝐹, then 

 𝑓(𝑥𝑖; 𝜃) = (𝑇1(𝑥𝑖; 𝜃1), … , 𝑇𝑀(𝑥𝑖; 𝜃𝑀))𝑇 , (2) 

where 𝑇𝑀(𝑥𝑖; 𝜃𝑀) = �̂�𝑖𝑀 the binary forecast of observation 𝑥𝑖 supplied by 𝐽𝑚. 𝑓𝑖 is a binary vector 

that summarizes the forest signal and subsequently acts as the ELM's new input characteristics. 𝑜𝑘 is 

the result obtained by Equation (3). 

 

𝑜𝑘 = ∑ 𝛽𝑗𝑔 (∑ 𝑤𝑗𝑥𝑖 + 𝑏𝑗

𝑁

𝑗=1

)

𝑁

𝑗=1

, 

𝑖 = 1, … , 𝑛, 

(3) 

where the following additional feature representations are supplied by the forest in Equation (2), 

besides 𝑥𝑖 represents 𝑖th, β𝑗 = [𝛽𝑗1, 𝛽𝑗2, … , 𝛽𝑗𝑚]𝑇 indicates the combined weight of the hidden and 

output layers, 𝑤𝑗 = [𝑤𝑗1, 𝑤𝑗2, … , 𝑤𝑗𝑛]𝑇 reflects the difference in weight between the 𝑗th hidden layer 

and the 𝑖th input layer, 𝑏𝑗 denotes the 𝑗th hidden layer's threshold and 𝑔(. ) represents the activation 

function using the sigmoid function. Accordingly, the output matrix of hidden layers 𝐻 Utilizing the 

sigmoid function, depicts the activation function. Accordingly, the output matrix of hidden layers 𝐻 

and output-hidden layer weights 𝑏 for the specified input-output sample pairs is now computed as 

follows 𝐻𝛽 = 𝑂. 𝐻 for the transfer function 𝑔(. ) as in Equation (3). The 𝑤𝑗. 𝑥𝑖 is portion becomes 

the sum of the components of another.𝑤𝑗 and 𝑥𝑖. The 𝑁 Equation (3) may be expressed concisely as: 

 𝐻𝛽 = 𝑂, (4) 
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where, 

 
𝐻 = [

𝑔(𝑤1𝑥1 + 𝑏1) ⋯ 𝑔(𝑤𝑁𝑥1 + 𝑏𝑁)
⋮ ⋱ ⋮

𝑔(𝑤1𝑥𝑛 + 𝑏1) ⋯ 𝑔(𝑤𝑁𝑥𝑛 + 𝑏𝑁)
]

𝑛×𝑁

, (5) 

 

𝛽 = [
𝛽1

𝑇

⋮
𝛽𝑁

𝑇
]

𝑁×𝑚

, and (6) 

 

𝑂 = [
𝑜1

𝑇

⋮
𝑜𝑁

𝑇
]

𝑁×𝑚

. (7) 

The 𝐻 represents the output matrix of the hidden layer. 𝐻𝑇 inverse of 𝐻 according to the 

generalized Moore–Penrose formula and 𝑡 is the target class/data label in Equation (8), 

 �̂� = 𝐻𝑇𝑡. (8) 

Furthermore, the output weights are calculated via a mathematical transformation, resulting in a 

decrease in the amount of time required in the training phase, during which the network's parameters 

are modified periodically using learning parameters (such as learning rate and iteration). The M-ELM 

algorithm aims to align the output of the actual hidden layers with the expected hidden layer outputs 

by incorporating a parameter setting step for the subsequent hidden layer [48]. The M-ELM algorithm 

presents an improved approach for establishing the mapping between input and output signals, known 

as the M-ELM. The network architecture of M-ELM has an input layer, multiple hidden layers, and 

an output layer [49]. Each hidden layer consists of 𝑗-th hidden neurons. The activation function for 

the network is chosen as 𝑔(𝑥). 

The primary objective of the M-ELM method is to perform weight calculation and updating for 

various layers, including the first hidden layer, the second hidden layer, and each subsequent hidden 

layer. Additionally, the algorithm also addresses the bias of the hidden layer and the output weights 

connecting the second hidden layer to the output layer. The workflow of the M-ELM architecture is 

illustrated in Fig. 2. 

Let us consider the training sample datasets 𝑥𝑖, where the matrix 𝐻 represents the input samples 

and 𝑡 represents the labeled samples. The M-ELM algorithm initially consolidates the 15 hidden layers 

into a single hidden layer. Consequently, the output of the hidden layer may be mathematically 

represented as 𝐻 =  𝑔(𝑤𝑗𝑥𝑖 + 𝑏𝑗), where 𝐻 denotes the hidden layer output, 𝑤𝑗 represents the weight 

parameters on a hidden layer, 𝑥𝑖 signifies the input layer and 𝑏𝑗 denotes the bias parameters of the first 

hidden layer. These weight and bias parameters are randomly initialized. Subsequently, the weight 

matrix 𝛽 connecting each hidden layer to the output layer can be derived by employing the Equation 

(8). 

The M-ELM algorithm now disentangles the previously fused hidden layers, resulting in the 

network having many hidden layers. Based on the depicted workflow in Fig. 2, the subsequent hidden 

layer's output can be acquired in the following manner: 

 𝐻1 = 𝑔(𝑤1𝐻 + 𝑏1), (9) 

where the weight matrix 𝑤1 represents the connections between the first hidden layer and the next 

hidden layer. The matrix 𝐻 represents the output of the first hidden layer. 𝑏1 denotes the bias of the 

next hidden layer, while 𝐻1 represents the expected output of the next hidden layer. However, the 

anticipated result of the second hidden layer can be acquired through computation: 
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 𝐻1 = 𝛽𝑇𝑡, (10) 

where 𝛽𝑇 represent the generalized inverse of the matrix 𝐻. 

The MERTLM model's architecture is seen in Fig. 4 and for the Pseudo Code from MERTLM 

model as shown in Table 2. 

 

Fig. 4. MERTLM architecture 

3.4. Model Evaluation 

During the experimental phase, the researcher carefully divided the dataset into two separate 

segments: the training data and the test data. The aforementioned segments underwent analysis using 

the Confusion Matrix model, a robust tool utilized to evaluate the precision of classification 

techniques. In this matrix, a mechanism is employed to measure the efficacy of the classification 

process, which is a crucial aspect of assessing the model's performance. 

The research employed a dataset of four discrete groups, namely Beta Thalassemia Trait, Iron 

Deficiency Anemia, Hemoglobin E, and Combination. The dataset plays a crucial part in the research. 

Within the experimental framework, the dataset was efficiently divided into two distinct segments. In 

this study, a partitioning strategy was employed where 80% of the dataset was allocated for training 
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purposes, facilitating the acquisition of knowledge by the model. The remaining 20% of the dataset 

was reserved as test data, serving as a means to assess and validate the performance of the model. 

Table 2.  Pseudo-code for the MERTLM 

Algorithm Multilayer Extremely Randomized Tree Learning Machine 

Input: 

− training_data: The training dataset with features and corresponding labels 

− testing_data: The testing dataset with features (labels are not used in this phase) 

− num_trees: The number of trees to create for the Randomized Tree 

− num_hidden_layers: The number of hidden layers in the M-ELM 

− num_hidden_units: The number of hidden units/neurons in each hidden layer of the M-ELM 

− activation_function: The activation function to be used in the hidden layers of the M-ELM using the 

Sigmoid function 

Output: ensemble_model (combined model using stacking). 
Begin 

1. function MERTLM (training_data, testing_data, num_trees, num_hidden_layers, num_hidden_units, 

activation_function) 

2.       Step 1: Train the Randomized Tree model 

3.       randomized_tree_model = Randomized_Tree (training_data, num_trees) 

4.       Step 2: Use the Randomized Tree to generate new features for training and 

      testing data 

5.       rf_predictions_training =  

      random_forest_model.predict(training_data.features) 

6.       augmented_training_data = concatenate(training_data.features,  

      rf_predictions_training) 

7.       rf_predictions_testing = random_forest_model.predict(testing_data.features) 

8.       augmented_testing_data = concatenate(testing_data.features,  

      rf_predictions_testing) 

9.       Step 3: Train the M-ELM model on the augmented training data 

10.       elm_model = Multilayer_ELM(augmented_training_data,  

        num_hidden_layers, num_hidden_units, activation_function) 

11.  Step 4: Use the M-ELM to make predictions on the augmented testing data 

12.  ensemble_predictions = elm_model.predict(augmented_testing_data) 

13.       return ensemble_predictions 

14. function Randomized_Tree(training_data, num_trees): 

15.       return trained_random_forest_model 

16. function M-ELM(training_data, num_hidden_layers, num_hidden_units, activation_function): 

17.       return trained_elm_model 

18. function concatenate(features, predictions): 

19.       return augmented_data 

 

The evaluation of performance in this study entailed the execution of a thorough investigation of 

a range of classification methods. The present investigation primarily concentrated on the assessment 

of fundamental metrics, including Accuracy, Precision, Sensitivity, and F1-Score, which hold 

significant recognition and usage within the respective field. The measures were quantified utilizing 

Equations (11)-(14) [50]: 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (12) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

 
𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×

𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (14) 

The entity that is referred to as "TP," which stands for True Positive, is responsible for performing 

diligent oversight of scenarios in which the system correctly recognizes and classifies positive data. 

The word "TN," which is a tribute to the idea of True Negative, is used to denote specific negative 

categorizations. This serves as evidence that the system is able to discern between different types of 

information. On the other hand, out of nowhere, the letter "FN," which stands for "False Negatives," 

appears. This is an indication that the system has made the terrible mistake of accidentally identifying 

negative data. A new component, which is referred to as "FP," which is an abbreviation for "False 

Positive," is included in addition to the ensemble that was previously discussed. It is the responsibility 

of this component to draw attention to data that the system, albeit having the best of intentions, 

incorrectly recognizes as positive. It was determined that the evaluative metrics should be combined 

and shown in Table 3 of the Confusion Matrix. This effectively illustrated the interaction between the 

metrics. 

Table 3.  Confusion matrix [51] 

                             Real Class 

Prediction 
True False 

True TP FN 

False FP TN 

 
Within the framework of this complex choreography, the Confusion Matrix assigns specific roles 

to pivotal terminologies. Equipped with the aforementioned numerical values, the conditions are 

established for the emergence of Accuracy, Precision, Sensitivity, and F1-Score. This transformation 

is orchestrated by a symphony of formulas. 

The aforementioned formulas effectively capture the fundamental aspects of the Confusion 

Matrix, encapsulating the performance metrics of the model in a mathematically elegant manner. The 

F1-Score, within the context of classification, represents a balanced and harmonious measure that 

encapsulates the intricate interplay between True and False Positives, Negatives, Precision, and 

Sensitivity. 

4. Results and Discussion 

The present study employed an experimental analytic approach, applying the suggested 

MERTLM model, in order to discover and characterize illnesses within a dataset consisting of patients 

diagnosed with Beta Thalassemia Trait, Iron Deficiency Anemia, Hemoglobin E, and Combination. 

The model parameters employed in this study are displayed in Table 2. The dataset including instances 

of anemia patients was utilized and divided into distinct training and testing sets to facilitate the 

execution of the experimental investigation. The assessment of the classification method in the 

research entailed employing a Python implementation of the Confusion Matrix. The investigation was 

conducted using a computing system featuring an Apple M1 processor, 512GB of internal storage, 

and 8GB of RAM. 

The 423 data sets were partitioned into two distinct groups, specifically referred to as the training 

dataset and the testing dataset. One of the objectives of this study is to propose an alternate framework 

for addressing the classification of various forms of anemia. The training data was allocated to 

comprise 80% of the total dataset, while the remaining 20% was designated for testing purposes. The 

dataset contains a total of seven independent variables. 
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This study introduces the MERTLM classification model as a proposed method for analyzing the 

anemia dataset in Table 4. The MERTLM model utilizes a hidden layer implementation comprising a 

single hidden layer feedforward network (SLFNs) that has been modified by incorporating an MA 

multilayer feedforward neural network (MFNN). This method can be characterized as a feedforward 

neural network with one or more hidden layers, in addition to the input and output layers.  

The data is conveyed to the input layer, which subsequently undergoes processing through the 

hidden layer, where a nonlinear activation function is applied. The output of the hidden layer is 

transmitted to the output layer, which produces the network's output. By employing supervised 

learning algorithms like backpropagation, the network is able to learn the weights. The algorithm 

adjusts the weights with the objective of minimizing the discrepancy between the predicted and 

observed output.  

Multilayer feedforward neural networks (MFNNs) have been found to exhibit superior 

effectiveness compared to single-layer feedforward networks [52], [53]. The primary reason for this 

phenomenon can be traced to the MFNN's capacity to discern intricate nonlinear connections 

between input and output data. The applicability of accuracy, precision, sensitivity, and F1-score 

criteria was assessed for the categorization of the anemia dataset. Table 5 displays the outcomes of 

the MERTLM model. According to the findings presented in Table 6, the MERTLM model had the 

highest level of success in classifying the four-class anemia dataset. This achievement was attained 

by utilizing 80% of the data for training purposes and allocating the remaining 20% for testing. The 

model exhibited an accuracy rate of 99.67%, precision rate of 99.60%, sensitivity rate of 99.47%, 

and an F1-Score of 99.53%. 

Table 4.  MERTLM model 

Parameters 
Multilayer Extremely 

Randomized Tree Learning Machine 
Target (RMSE) 0.001 

Inputs 7 

Outputs 4 

Hidden layers 15 

Training data 453 

Testing data 114 

Hidden layer neurons 9 

Output layer neurons 4 

Activation function Sigmoid 

Table 5.  Performance results of the MERTLM model 

Split Data Model Accuracy (%) Precision (%) Sensitivity (%) F1-Score (%) 

80% Train – 

20% Test 

Multilayer 

Extremely 

Randomized Tree 

Learning Machine 

99.67 99.60 99.47 99.53 

 

Table 6 presents the normalized confusion matrix of the model utilized in the present study. The 

matrix is structured such that each column corresponds to a predicted class instance, and each row 

corresponds to an actual class instance. 

To optimize the efficacy of the methodology, the incorporation of MERTLM has been utilized 

to augment the classification procedure for datasets pertaining to anemia. Hyperparameter tuning is 

employed to ascertain the ideal number of hidden layers, with an emphasis on increasing the sensitivity 

score. The analysis determined that the ideal number of nodes for the hidden layer was 15, as 

evidenced by the data presented in Fig. 5. Table 7 presents the performance index of each class and 

the proposed strategy, which demonstrates the highest success rate on the anemia dataset. Various 

machine learning applications utilize the random forest, k-nearest neighbor, support vector machine, 

extreme learning machine approaches, and multilayer extremely randomized tree learning machine. 
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The results suggest that the highest level of predictive accuracy was obtained across all categories of 

anemia. 

Table 6.  Confusion matrix results from the MERTLM compared to other methods 

Model Classes BTT IDA Hb E Combination 

Random Forest 

BTT 18 2 1 0 

IDA 0 26 3 2 

Hb E 2 3 56 0 

Combination 1 0 4 34 

K-Nearest Neighbor 

BTT 21 0 0 0 

IDA 1 30 0 0 

Hb E 0 0 61 0 

Combination 0 0 1 38 

Support Vector Machine 

BTT 15 1 5 1 

IDA 2 19 3 1 

Hb E 4 7 48 4 

Combination 0 4 5 33 

Extreme Learning Machine 

BTT 14 0 0 0 

IDA 0 17 0 0 

Hb E 0 0 50 0 

Combination 0 0 1 32 

Multilayer Extremely  

Randomized  

Tree Learning Machine 

BTT 17 0 0 0 

IDA 0 27 0 0 

Hb E 0 0 61 0 

Combination 0 0 1 46 

 

 

Fig. 5. Hyperparameter tuning hidden layer of MERTLM 

Within the field of medicine, the crucial equilibrium between accurately discerning states of 

health and illness, as well as the potential severe ramifications of incorrect diagnoses, has emphasised 

the pressing need for dependable diagnostic instruments. The increased utilisation of data mining 

technologies has been prompted by this phenomenon, in order to guarantee meticulous and reliable 

evaluations. Given this context, the current study utilised an extreme learning machine (ELM) model 

to construct a reliable framework for the identification and assessment of anemia. Furthermore, a 

meticulously designed decision support system was developed to offer invaluable aid to clinicians in 

their crucial decision-making procedures. 
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The study utilised a dataset consisting of 339 training samples and 84 test samples. The findings 

of the research demonstrated that the developed MERTLM approach displayed exceptional 

performance. In a comparison investigation, it was shown that the MERTLM model outperformed 

other models, including random forest (RF), k-nearest neighbours (KNN), support vector machine 

(SVM), and ELM, displaying noteworthy performance metrics. The MERTLM model demonstrated 

a noteworthy degree of performance, attaining an accuracy rate of 99.67%, a sensitivity rate of 

99.47%, a precision rate of 99.60%, and an F1-Score of 99.53%. In stark contrast, the Random Forest 

(RF) model demonstrated a remarkable accuracy rate of 93.74%, a recall rate of 87.14%, a precision 

rate of 87.88%, and an F1-Score of 87.46%. In contrast, the KNN model exhibited comparatively 

lower performance metrics. It achieved an accuracy rate of 99.34%, a recall rate of 98.55%, a precision 

rate of 98.46%, and an F1-Score of 98.48%. The ELM approach demonstrates an attained accuracy 

rate of 99.56%, a recall rate of 99.24%, a precision rate of 99.51%, and an F1-Score of 99.37%. 

Table 7.  Index of performance results for each class in each methods 

Model Classes 
Accuracy 

(%) 

Precision 

(%) 

Sensitivity 

(%) 

F1-Score 

(%) 

Random Forest 

BTT 95.71 85.71 85.71 85.71 

IDA 93.06 83.87 83.87 83.87 

Hb E 91.16 87.50 91.80 89.60 

Combination 95.04 94.44 87.18 90.67 

K-Nearest Neighbor 

BTT 99.34 95.45 100 97.67 

IDA 99.34 100 96.77 98.36 

Hb E 99.34 98.39 100 99.19 

Combination 99.34 100 97.44 98.70 

Support Vector Machine 

BTT 89.84 71.43 68.18 69.77 

IDA 86.47 61.29 76.00 67.86 

Hb E 80.42 78.69 76.19 77.42 

Combination 88.46 84.62 78.57 81.48 

Extreme Learning Machine 

BTT 100 100 100 100 

IDA 100 100 100 100 

Hb E 99.12 98.04 100 99.01 

Combination 99.12 100 96.97 98.46 

Multilayer Extremely  

Randomized Tree Learning 

Machine 

BTT 100 100 100 100 

IDA 100 100 100 100 

Hb E 99.34 98.39 100 99.19 

Combination 99.34 100 97.87 98.92 

 

Automated detection of blood cell deformities is challenging due to manual errors and time 

constraints. Artificial neural networks offer a solution. The present study presents a novel 

methodology, namely the 3-TierDCFNet, which aims to extract morphological characteristics and 

perform classification of anemia photos, enabling the prediction of disease severity. Module I 

differentiates between healthy and anemic photos, whilst Module II classifies anemia into moderate 

or chronic categories. Collaborating with Shaukat Khanum Hospital, new datasets were crafted. 

Experimental results show the model achieves 91.37% training, 88.85% validation, and 86.06% 

testing accuracies. F1-Score recall and specificity are also impressive: 98.95%, 98.12%, and 98.12%, 

respectively [54]. 

A groundbreaking method, MC-LASSO-ELM, combines Monte Carlo sampling and LASSO for 

estimating blood hemoglobin levels. It selects samples using random sampling, applies LASSO for 

variable selection, and merges predictions for the final forecast. When coupled with near-infrared 

spectroscopy, MC-LASSO-ELM outperforms ELM, MC-ELM, and LASSO-ELM in stability and 

accuracy. ELM accuracy relies on the activation function and hidden nodes, with the sigmoid function 

and 66 hidden nodes proving optimal. The ELM sub-model's iteration number (T) significantly 

impacts computation time and predictive accuracy. (root mean square error of cross-validation 

(RMSECV) varies substantially and lacks stability with small values. It rapidly declines before 50, 

then slows beyond 100 [55]. 
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This research expands upon the existing body of knowledge established by previous studies. A 

study conducted by [56] analyzed a comprehensive dataset consisting of 6,935 instances and 986 

variables. The researchers KNN with an accuracy rate of 92.36% and RF with an accuracy rate of 

94.16% to classify between BTT and IDA. Another study conducted by researchers Khan et al. (2021) 

aimed to predict the risk of childhood anemia using various machine-learning techniques, such as 

KNN and RF. In this study, the RF algorithm demonstrated superior performance compared to the 

KNN algorithm in terms of accuracy, sensitivity, and specificity. RF achieved an accuracy of 68.50%, 

the sensitivity of 70.70%, and specificity of 66.40%, surpassing the corresponding values for KNN, 

which were 61.95%, 65.85%, and 58.20% respectively. Moreover, a study conducted in 2020 

demonstrated that RELM achieved a classification accuracy of 95.59% when categorizing 342 patient 

records into two distinct types of anemia, namely IDA and BTT [41]. Significantly, the extended 

lymphocyte model also gained prominence during these investigations. 

The ELM approach's evolution is evident in the transition from a single hidden layer to the 

complex structure of a 100-node multilayer hidden layer, giving rise to improved multilayer extreme 

learning machines (IML-ELM). This novel design employs neural activity during and after training, 

integrating ortho-normal random connection weights in the initial IML-ELM network. Notably, IML-

ELM2, the second iteration, maintains this feature only in its first layer. The strategic evolution 

significantly reduces computational time. Impressively, the root mean square error test shows 

promising results of 0.627977, 0.104272 (83%), and 0.092685 (85%), reflecting the notable progress 

achieved and the effectiveness of the IML-ELM approach in enhancing performance [42]. 

The series of investigations conducted by researchers [41], [56], [57] enhanced by a diverse 

range of machine and deep learning methodologies, demonstrates the highest level of achievement 

in RELM, achieving a notable accuracy of 95.59% in distinguishing between two different types of 

anemia. Utilizing these foundational elements as building blocks, the implementation of the 

MERTLM model in the present study presents a promising outlook. The condition known as anemia 

can be categorized into four distinct subtypes. Recently, there has been a significant improvement in 

the accuracy of diagnosing anemia, reaching a level of 99.67% accuracy, 99.60% precision, 99.47% 

sensitivity, and an F1-Score of 99.53%. 

Table 8 presents a comparative analysis of the outcomes achieved in previous investigations, 

focusing on the accuracy parameter. Based on the obtained results, which were effectively achieved 

using ELM. In contrast to the existing body of research, the study focused on the examination of 

individuals belonging to four distinct categories, specifically BTT, IDA, HbE, and Combination. The 

differences made between the four classes were classified to obtain higher accuracy compared to other 

methods, namely 99.21% for the four classes. In the future, We plan to evaluate the features that are 

the main factors of anemia patients, so that it can help doctors to speed up diagnosis in every type of 

anemia that occurs in patients to get a method that will be much more optimal. A deep learning method 

of classifying anemia data sets and proposing new ones that are suitable for anemia data sets. 

5. Conclusion 

Discriminating between BTT, IDA, HbE, and their combinations remains a formidable challenge 

due to the diverse anemia population. The computational model offers a means to expedite anemia 

screening, resulting in significant time and cost savings.  This research further presents a 

comprehensive analysis of the healthcare system's performance and the challenges encountered in 

addressing anemia worldwide. It contributes by introducing the MERTLM method, which enhances 

the efficiency of anemia-type screening.  The prediction outcomes are rigorously assessed using a 

confusion matrix, demonstrating remarkable performance gains. Specifically, the algorithm yielded 

outstanding results, including a 99.67% accuracy rate, 98.47% sensitivity, 99.60% precision, and an 

F1-score of 99.53%.  

An issue that necessitates particular consideration is the selection of the optimal number of 

hidden layers to be employed in the MERTLM. The MERTLM technique involves the integration of 
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two classification algorithms to provide a novel output model. In subsequent studies, we intend to 

investigate the utilization of an optimization method to ascertain the optimal quantity of hidden layers 

inside the MERTLM framework, as well as optimizing the MERTLM model itself. The methodology 

to be investigated is a metaheuristic algorithm method. 

Table 8.  Competitive results from another method 

Authors Year 
Data 

Size 

Number of 

Classes 
Method 

Accuracy 

(%) 
Tyas et al. 

[58] 
2020 7,108 9 Multilayer Perceptron 93.77 

Çil et al. [41] 2020 342 2 ELM, RELM, SVM, and KNN 95.59 

Yıldız et al. 

[59] 
2021 1,663 12 

ANN, SVM, Naïve Bayes,  

and Ensemble Decision Tree 
85.60 

Wei et al. 

[60] 
2021 428 2 AneNet 98.65 

Dejene et al. 

[61] 
2022 11,174 4 

Decision Tree, Random Forest,  

Cat Boost, Extreme Gradient Boost 
97.56 

Vohra et al. 

[62] 
2022 364 3 

Decision Tree, Logistic Regression, MLP, 

Naïve Bayes, Random Forest, and SVM 
96.10 

Asare et al. 

[63] 
2023 710 2 

CNN, Naïve Bayes, Decision Tree,  

KNN, and SVM 
99.12 

Dhalla et al. 

[64] 
2023 324 2 

UNet, UNet++, FPN,  

PSPNet, and LinkNet 
94.17 

Saputra [50] 2023 190 4 Random Forest, SVM, KNN, and ELM 99.21 

Proposed 

Model 
2023 423 4 

Random Forest, SVM, KNN,  

ELM, and MERTLM 
99.67 
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