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1. Introduction 

Drones, or unmanned aerial vehicles, or UAVs, are now widely used and very significant in many 

different industries. Monitoring, environmental supervision, and civic security management are 

examples [1]. Fixed-wing and rotorcraft UAVs are the two primary subtypes of these aircraft. A major 

and rapid development of fixed-wing unmanned aerial vehicles (UAVs) with vertical takeoff and 

landing (VTOL) occurred between 2020 and 2022 [2]-[4]. By integrating electric or hybrid propulsion 

systems, it is possible to combine the capabilities of Aeroplan and multirotor UAVs [5]-[7]. Many 

unmanned aerial vehicles (UAVs) rely on an onboard autopilot system that utilizes small sensors, 

including accelerometers, gyroscopes, barometers, and GPS. Accurate determination of a UAV's 
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orientation and location is the initial stage in achieving precise machine control [8]. Different factors, 

including weather conditions, obstacles, distance, metal interference, radio interference, and 

frequency interference, affect the propagation of a drone's signal. Precipitation and high temperatures 

can affect signal transmission, drone electronics, and battery performance [9]. 

Fig. 1 [10] shows the use of drones in firefighting operations. We currently use drones to perform 

tasks like capturing overhead imagery, lifting fire hoses to tall buildings, or releasing fire retardant in 

distant locations to slow the rapid spread of wildfires. Nevertheless, existing drones designed for 

firefighting are typically incapable of flying in close proximity due to their inability to withstand the 

extreme temperatures, which would result in their melting and the failure of their electrical 

components. Conversations with firefighters revealed that drones, with their ability to approach 

buildings at a closer distance, could significantly aid in training first responders to access burning 

structures or wooded areas [11]-[15]. 

 

Fig. 1.  Use of drones in firefighting 

Signal strength is a crucial element. In addition, the drone may move erratically and lose signal 

strength due to the temperature effect on its communication system. Temperature change affects the 

drone communication systems, which cause signal attenuation and frequency offset and affect 

electronic components and batteries. Temperature effects from electromagnetic waves, which change 

temperature and alter density and refractive index in the atmosphere, Temperatures generate thermal 

noise, which can decrease the drone communication system's SNR. High temperatures may cause 

component failure, and low temperatures can decrease batteryefficiency. The random motion of 

electrons generates thermal noise (Johnson-Nyquist), which degrades the drone communication 

system's performance, including SNR and RSSI. Thermal noise adds an additional noise factor to the 

received signal. The decrease in SNR can degrade the quality of siganl and make it more difficult for 

the receiver to accurately decode the information from transmitted siganl. Thermal noise reduces the 

SNR for the received signal so that thermal noise causes a limit to the communication system's 

performance. The increase in the SNR causes a decrease in the received signal strength RSSI. 

Weather elements such as wind, air temperature, and atmospheric water content can mix in a 

variety of ways. Specific combinations can result in the reception of radio signals at distances 

exceeding the typical range of radio communications by several hundred miles [16]-[17]. 

Various elements that can impact the propagation of radio signals include geography, structures, 

plants, carbon dioxide (CO2) levels, and weather conditions. Several writers [18]-[20] have conducted 

studies on weather parameters, including rain, wind, temperature, and humidity. A team of 

Singaporean researchers focused on analyzing the synergistic impact of wind and rain, a common 

occurrence in tropical forests [21]. 

Many scholars examined different temperature sources that affect this unmanned aerial vehicle 

(UAV). Given that temperature has an impact on the functioning of fundamental components in 
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electrical and electronic circuits, it is customary in businesses to evaluate its influence on particular 

devices. Several studies have examined the effect of temperature on network operations. Jari Luomala 

[22] investigates the effect of temperature on signal intensity and measures the negative linear 

correlation between temperature and signal strength. Carlo [23] shows temperature has an effect on 

signal strength and link quality.  They found that a lower temperature can reduce the power needed 

for reliable transmission by up to 16%.  

Bannister et al. [24] confirmed by experiment the linear decrease in Received Signal Strength 

Indication (RSSI), which ranged up to 8 dB, when the temperature increased from 25°C to 65°C. They 

displayed the impact that this has on the range of communication and connectivity of the network. 

Wennerstrom et al. [25] showed a correlation between PRR (packet reception ratio) and RSSI with 

temperature, relative humidity, precipitation, and sunlight. Their findings indicate a strong correlation 

between PRR and RSSI and temperature. In addition to temperature, other meteorological factors such 

as humidity, precipitation, and snowfall have also garnered significant interest among academic 

communities. 

The experiment conducted by Thelen et al. [26] determined that radio waves exhibit enhanced 

propagation in high-humidity conditions, particularly at night and after rainfall. In their study, Capsuto 

et al. [27] conducted trials and found that cold weather did not have a discernible effect on linkages. 

However, they noted that rainfall and overall moisture had a significant effect on RSSI. Fluctuations 

in meteorological conditions impact the strength of radio signals. Received signal intensity is subject 

to fluctuations due to multipath fading and propagation loss, with temperature being a known 

influential factor in the performance of radio transceivers. Elevated temperatures have a detrimental 

effect on signaling. Temperature-dependent transceiver features, like gain, can be utilized as physical 

mechanisms for measuring fluctuations. Transistors are essentially the crucial components that 

amplify signals in an amplifier. In CMOS transistors, the primary thermal effect is the reduction in 

electron mobility as temperature increases.  

The inverse relationship between temperature and trans-conductance gain results in a decrease in 

gain and an increase in noise figure. Experimental findings [28] indicate that variations in signal 

strength are primarily attributed to changes in gain and noise figures. The decrease in signal strength 

readings at the transmitter side is a result of the combination of reduced gain and a decrease in the 

input signal level. On the other hand, the decrease in signal strength at the receiver side is caused by 

the thermal characteristics of the transmitter's power amplifier and the low-noise amplifier of the 

receiver. However, the decrease in RSSI is independent of the pace at which the temperature changes 

[29]. The studies conducted in references [24] and [29] demonstrated that it is possible to reduce the 

transmission power without compromising the network's performance. A decrease in temperature 

enhances the transmission of network signals, resulting in the development of an efficient transmission 

system with minimal power loss. 

However, the influence of weather on other communication systems, primarily those operating 

at 2.4 GHz and frequently used outside, has been extensively researched [30]-[32]. Meteorological 

circumstances have a significant impact on radio signals, with the extent of this impact varying 

depending on the frequency range. In addition, empirical evidence from actual implementation in the 

field contradicts the advice provided by ITU-R. [33]-[35]. Hence, while the weather may not have a 

direct impact on radio waves operating at 2.4 GHz, it might potentially alter other ambient conditions 

that can influence the transmission of data in a WLAN. For instance, WLAN transmitters can suffer 

fluctuations in humidity and temperature during the duration of the day, resulting in varying 

performance. [36] Examine the effects of elevated temperatures on nodes in an industrial setting. The 

researchers conclude that it has a direct impact on their connection and that lower transmission power 

is needed in colder temperatures. As the temperature increases, the quality of the linkages decreases. 

A laboratory experiment in [37] validated the linear decline of the radio signal strength (RSS) when 

the temperature increased from 25 °C to 65 °C. The authors assessed the effects of reducing a node's 

communication range and demonstrated its substantial influence on network connectivity and services 

through simulations. Several researchers have recognized that humidity plays a crucial role in the 

performance of communication between sensor nodes. Their findings indicate that radio waves exhibit 
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enhanced propagation in environments characterized by elevated humidity levels, particularly during 

nighttime and rainy situations. A separate study [38] suggests that variations in air pressure and 

precipitation can have an impact on wireless signal propagation. 

In this work, we investigate how temperature impacts drone communication systems, which may 

have an adverse effect on wireless communication system performance. We assess the effectiveness 

of the drone's communication system by measuring the signal-to-noise ratio (SNR) and the received 

signal strength indicator (RSSI). The CNN convolutional neural network makes predictions about 

these parameters. Once we train and test our model on the drone laboratory's generated dataset, the 

MATLAB App Designer generates an intuitive and user-friendly GUI. Unlike other works that solely 

rely on simulation to evaluate the effectiveness of the unmanned aerial vehicle UAV communication 

system, our work incorporates the use of 1DCNN. This study offers a useful technique for assessing 

a UAV communication system's effectiveness. We see that the performance of the drone 

communication system decreases with increasing temperatures. 

The following is the study: An overview of the literature is given in Section 1, along with an 

explanation of the methodology. The theoretical foundation of the temperature effect on 

communication systems and convolutional neural network (CNN) layers is then explained in Section 

2. Examine the mathematical representations of the SNR (signal-to-noise ratio) and RSSI (received 

signal strength indicator) in Section 3. Section 4 then describes the techniques employed and explains 

the procedures and algorithm to experiment with the temperature on a drone using MATLAB 2021b 

in a convolutional neural network (CNN). The RSSI (Received Signal Strength Indicator) and SNR 

(Signal to Noise Ratio) findings across a range of temperatures are displayed in Section 5. A 

comprehensive discussion and recommendations based on the findings are presented in the final part. 

2. Theoretical Background 

This section briefly discusses temperature effect drone communication system and the 

Convolution Neural Network (CNN) layers. 

2.1. The Temperature's Impact on Communication System 

We employ the widely used basic metrics RSSI (Received Signal Strength Indicator) and SNR 

(Signal to Noise Ratio) to evaluate the strength of the connection [39]. The Receiving Strength of 

Signal Indicator (RSSI), a common feature of radio transceivers used in nodes, indicates the power of 

the received radio signal in a specific radio channel. Thermal noise is defined as random fluctuations 

in electrical signals caused by the system's thermal energy. Reduce the signal-to-noise ratio (SNR) of 

the received signal to ensure that thermal noise primarily limits the performance of the communication 

system. An increase in the signal-to-noise ratio (SNR) results in a reduction in the received signal 

strength (RSI) [40]-[41]. 

Weather fluctuations affect the strength of radio transmissions. The temperature has a discernible 

impact on the strength of the received signal, which fluctuates over time as a result of multipath fade 

and propagation loss. It significantly influences the performance of radio transmitters. Elevated 

temperatures have an adverse impact on signals. Temperature-dependent transceiver features, such as 

gain, can be used as physical mechanisms to measure fluctuations. 

Temperature-dependent reductions in electron mobility are the primary factor that affects CMOS 

transistors. These reductions are critical for providing an amplifier with amplification gain. The 

negative correlation between temperature and trans-conductance gain leads to a reduction in the latter, 

resulting in an increase in the noise figure. In general, the signal strength (RSSI) tends to decrease as 

the temperature increases, and vice versa. 

This implies that there is an inverse correlation, or reliance, between signal strength and 

temperature. Weather fluctuations affect radio signals' power. Temperature is the primary factor that 

influences changes in signal intensity, and it typically has a negative, linear impact on signal strength. 

Nevertheless, elevated relative humidity can also exert an influence, particularly when the temperature 

falls below 0 °C. 
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Moreover, the relationship between climatic conditions and signal intensity differs depending on 

the specific radio channel and link. We can alleviate these effects by employing a diverse range of 

frequencies. Ultimately, reducing the transmit power leads to a stronger correlation with 

meteorological parameters, minimizing the unpredictable fluctuations in received signal intensity. 

2.2. Convolution Neural Network (CNN) 

In the field of deep learning, the Convolutional Neural Network (CNN) is well recognized as the 

most renowned and often utilized algorithm [42]-[46]. One significant advantage of CNN over its 

predecessors is its ability to autonomously detect key elements without the need for human 

supervision [47]. Convolutional neural networks (CNNs) have been widely utilized in several 

domains, such as computer vision [48], voice processing [49], and face recognition [50]. CNNs were 

designed based on the neuronal structure found in animals and human brains, resembling that of a 

traditional neural network. To be more precise, the visual cortex in a cat's brain is composed of an 

intricate arrangement of cells, which is replicated by CNN's algorithm [51]. Goodfellow et al. [52] 

have recognized three primary advantages of the Convolutional Neural Network (CNN): comparable 

representations, sparse conversations, and sharing of parameters. CNNs utilize weight sharing and 

local connections to effectively utilize the 2D structures of input data, such as visual signals, in 

contrast to traditional fully connected (FC) networks. This method employs a minimal number of 

parameters, which not only simplifies the training process but also accelerates the network. This is 

identical to the cells seen in the visual cortex. These cells have the ability to perceive only tiny parts 

of a scene instead of the entire scene. In other words, they extract the local correlations present in the 

input, similar to local filters over the input. 

A commonly used type of CNN, resembling a multi-layer perceptron (MLP), includes many 

convolution layers followed by sub-sampling (pooling) levels, with the last layers having fully 

connected (FC) layers. Fig. 2 depicts a case of CNN architecture used [53]. 

 

Fig. 2. CNN with four layer 

A conventional two-dimensional convolutional neural network (2DCNN) is specifically designed 

to exploit the spatial characteristics present in 2D images. It achieves this by utilizing locally 

connected convolutional filters with tied weights, which operate on multiple pixels simultaneously 

rather than a single pixel [54]-[55]. This approach enhances the ability to detect the interdependencies 

among pixels. In a 2-dimensional convolutional neural network (2DCNN), the input data is initially 

transformed into 3-dimensional data, with dimensions for width, height, and depth. The depth is set 

to 1 for a single-band image and 3 for a three-band image representing the red, green, and blue 

channels. Next, a feature map is generated through the repeated utilization of convolution operators 

on sub-regions of the complete picture. This process involves the addition of a bias term, followed by 

the application of a non-linear activation function. The convolutional process of a convolutional neural 

network (CNN) is represented by an Equation (1). 

 
𝑥𝑙

𝑗
= 𝑓 ( ∑  𝑥𝑖

𝑗−1
∗ 𝑤𝑖𝑙

𝑗

𝑖∈𝑃𝑛

+ 𝑏𝑙
𝑗
) (1) 
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Where 𝑙:  no. of layers; 𝑗 component; 𝑤: weight; 𝑏: basis 

Adding a pooling layer into the CNN enhances the quality of features obtained from the 

convolutional layer represent in Equation (2), as discriminant features have an essential role in 

accurate classification by a classifier. 

 𝑥𝑙
𝑗

= 𝑓(𝑤𝑙
𝑗

∗ max(𝑥𝑖
𝑗−1

) + 𝑏𝑙
𝑗
) (2) 

Where 𝑥𝑙
𝑗
: the max pooling operation. CNN utilizes multiple layers of convolution and pooling to 

improve its capacity to extract localized information from the input data. The CNN employs pooling 

and convolutional layers to extract latent information and subsequently categorize the data into 

suitable categories. For this purpose, CNN uses a fully connected layer. Equation (3) represents a fully 

connected layer that classifies the latent characteristics obtained using the convolution kernel [56]. 

 
𝑓𝑥𝑗+1 = (∑ 𝑤𝑖𝑙

𝑗
𝑎𝑗(𝑖) + 𝑏𝑙

𝑗

𝑛

𝑖=1

 ) (3) 

The standard deep convolutional neural networks (CNNs) discussed in the preceding section are 

specifically designed to function primarily. However, when dealing with one-dimensional time-series 

data, such as the acceleration data mentioned in this research, the 1D Convolutional Neural Network 

(1DCNN) is typically a more optimal option [57]. 

Fig. 3 illustrates the distinction between 2DCNN and 1DCNN. When 2DCNN is applied to a 2D 

image, it produces a 2D image. On the other hand, when 1DCNN is applied to a 1D image, it generates 

a 1D image. The 1DCNN's convolutional filter is designed to operate on one-dimensional data, 

allowing it to identify the relationships and connections within the data. 

 

Fig. 3. Different between (a) 1DCNN vs (b) 2DCNN 

In order to identify temperature impacts, we used a one-dimensional convolutional neural 

network (1D CNN) in this investigation. The feature extraction process includes the use of CNN. We 

used the dataset that the drone laboratory provided to create 1DCNN. We employed the subsequent 

methodology, splitting the original dataset into a training set and a validation set to create a new 

dataset. We then trained the dataset for regression using 1DCNN in MATLAB. We then calculated 

performance metrics like mean squared error, root mean absolute error, mean absolute error, and 

relative error. Finally, we used App MATLAB Designer to transform the code into an accessible and 

user-friendly platform. 

3. Mathematical Model 

As we mention in previous section there is a relation between RSSI and SNR. The formula of 

SNR is Equation (4): 

 
𝑆𝑁𝑅 =  

𝑃𝑟

𝑃𝑠
 (4) 
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 𝑃𝑠 =  𝐾. 𝑇. 𝛻𝐹 (5) 

where: 

𝑆𝑁𝑅: Signal-to-noise ratio 

𝑃𝑟: Received signal power (W) 

𝑃𝑠: Noise power (W) 

𝐾 : Boltzmann constant (1.38 * 10^-23 J/K) 

𝑇 : Temperature (K) 

∇𝐹 : Bandwidth (Hz) 

Received Signal Strength Indicator (RSSI) Equation (6): 

 𝑅𝑆𝑆𝐼 =  𝑃𝑡 − 𝑃𝑙(𝑑) + 𝐺𝑡 + 𝐺𝑟 (6) 

where: 

𝑅𝑆𝑆𝐼: Received Signal Strength Indicator 

𝑃𝑡 Power transmits 

 𝑃𝑙(𝑑): Path loss  

 𝐺𝑡: Gain transmits 

 𝐺𝑟: Gain received 

4. Methodology 

We will use the following technique for predicting the (RSSI and SNR) temperature impact on 

the drone's communication system: 

4.1. One-Dimensional Convolution Neural Networks (1DCNN) 

Simulated-based theory models are usually used to find out how temperature impacts drone 

transmission systems. The data we have collected will be used for training and testing our model using 

DL (deep learning). Following that, we can utilize it with various types of information. There are 

many uses for deep learning, which is a type of artificial intelligence. [58]-[59]. As element of the 

convolutional neural system (CNN), artificial neural networks (ANN) have fewer factors. [60]-[61]. 

The convolutional neural network (CNN) is a well-known deep learning algorithm that can be learned 

from data without a person having to separately identify features. [62]-[66]. 

Once the CNN design has been planned, Follow the steps in the flow chart of 1DCNN in Fig. 4 

to process the information. The information that the drone lab gave us was what we used to make 

1DCNN. This method was used: To make a new dataset, the old one was split into a training set and 

a validation set. After that, 1DCNN in MATLAB was used to train the dataset for regression. Once 

the training was over, success measures such as the mean squared error. 

4.1.1. Dataset Collection from Drone Laboratory 

We collected a dataset in the drone lab (laboratories of the Industrial Research and Development 

Directorate/Electronic Manufacturing Centre), as illustrated in Table 1. These parameters (carrier 

frequency and temperature) have different values. Put a label on each set with its SNR and RSSI, 

which stand for the set. 

The Ministry of Science and Technology's Drone Laboratory conducted the experiment. To 

collect the dataset, use the all-parameter values from this experiment. As shown in Fig. 5 the drone 

laboratory heat effect works with the following equipment: 
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• Drone Quadcopter. 

• Temperature Sensor (DHT22). 

• Arduino-Uno. 

• Noise Figure Meter.  

• RF Power Meter. 

• PLX-DAQ (data logger). 

• Cables. 

• Heat Champers. 

Table 1.  The Sample of dataset for the 1DCNN heat effect 

Dataset parameters 

Frequency-Carrier Temperature 
2.4 50 

2.4 30 

5.8 10 

5.8 4 

 

 

Fig. 4. Flow chart of CNN 

Fig. 6 depicts the connection between the Arduino and the heat sensor (DHT22). It can accurately 

measure temperatures ranging from -40 to +125 degrees Celsius. This sensor uses a single digital pin 

to send data. We connect the VCC and GND pins to the Arduino's 5V pin and ground pin, respectively. 

Next, connect the Arduino to a data logger (PLX-DAQ) to record the heat value. We then connect the 

drone antennas to the noise figure meter and RF power meter. with a coaxial cable. Next, adjust the 

temperature in Heat Champers to ensure that all values have an effect. 
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Fig. 5. Diagram for the heat experiment 

 

Fig. 6. Diagram for connecting arduino and heat sensor 

4.1.2. 1DCNN Architecture 

We designed the modal convolution neural networks to be suitable for learning the relationship 

between parameter input and their SNR and RSSI cross-ponding, following the 1D CNN's structure: 

A. Input-Layer: This is where you configure the data's dimensions for entry. There are two separate 

columns and one row of labels in one set. 

B. Convolution-Layer: We pull out important features using a two-layer method and (16, 32) filters 

with a 3×3 size for the kernel. We create feature maps by combining the raw data with weights 

in the convolution layer's kernel. Real-life Using a 3×3 filter size in convolutional layers 

perfectly balances finding localised features. The output dimensions are adjusted to align with 

the input dimensions. 

C. Relu-Layer: We use two layers and an activation function to take the result of the convolution 

phase and change it into a random pattern. 
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D. Fully Connected-Layer: We use one layer, containing weights, biases, and neurons that link 

neurons between different layers. In a CNN design, these layers typically come before the final 

layer. For example, one neuron in this layer gives off a number that displays the anticipated 

RSSI and SNR. 

E. Regression-Layer: We use one layer to calculate the error between the predicted and actual 

outputs. This layer is primarily utilised for regression assignments. Iincluding the prediction of 

continuous values like the RSSI and SNR. The CNN architecture has been planned. To process 

the dataset, we run the third-step regression. 

4.1.3. 1D CNN Regression Process 

After loading the dataset through the input layer, see Fig. 4 it illustrates the need to split it into 

two sets: a 70% training data set and a 30% testing data set. We do this to assess the model's 

performance and accuracy. We utilise the 1DCNN (convolutional neural network) analysis to estimate 

the values of the signal-to-noise ratio (SNR) and the RSSI.  

1. Mean square error (MSE) 

 
𝑀𝑆𝐸 =

1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)
2

𝑛

𝑖=1

 (7) 

2. Root mean square error (RMSE) 

 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (8) 

3. Mean Absolute Error (MAE) 

 
𝑀𝐴𝐸 =

1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

^|

𝑛

𝑖=1

 (9) 

4. Root Mean Absolute Error (RMAE) 

 𝑅𝑀𝐴𝐸 = √𝑀𝐴𝐸 (10) 

5. Relative Error (RAE) 

 
𝑅𝐴𝐸 =

1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
^

𝑦𝑖
|

𝑛

𝑖=1

× 100% (11) 

Where 𝑛 : the number of samples; 𝑦𝑖: the real value; 𝑦𝑖
^ the predicated value. 

4.2. MATLAB Application Designer 

We completed the regression training and identified the factors for system evaluation. We used 

MATLAB App Designer to transform the code into a user-friendly tool. This is a smart way to make 

things more accessible and usable. An easy-to-use GUI in App Designer makes it possible to make 

live MATLAB apps as shown in Fig. 7 to predicate SNR value. and Fig. 8 to predicate RSSI value. 

This graphical user interface (GUI) contains the following elements: 

A. The second field has a drop-down list representing the type of frequency carrier (2.4 GHz, 5.8 

GHz). 

B. The second field representing the temperature value. 

C. The third field represents the SNR value. 

Pressing the “Check” button displays the SNR value in the SNR field, 
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Fig. 7. Graphical user interface to predicate SNR 

 

Fig. 8. Graphical user interface to predicate RSSI 

This graphical user interface (GUI) contains the following elements: 

A. The second field has a drop-down list representing the type of frequency carrier (2.4 GHz, 5.8 

GHz).  



1048 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1037-1058 

 

 

Ahmed Hussein Abbas (Investigating the Influence of Temperature on UAV Signal Quality) 

 

B. The second field representing the temperature value.  

C. The third field represents the RSSI value. 

Pressing the “Check” button displays the RSSI value in the RSSI field,  

In short, we collected the information from our test in the drone lab. We collected data for each 

measure, including frequency carrier and temperature, in different amounts. Next, standardise the 

incoming data and prepare the labels to align with CNN's training data format. Finally, give each set 

the right SNR and RSSI. I taught CNN how to connect the input parameters with their SNR and RSSI 

cross-ponding. Next, we send the information to the input layer. We use seventy percent of the last set 

of data for training and thirty percent for testing. In the convolution layer, we evaluate the mode 

performance and feature extraction from the input. The last step is to lower the number of dimensions 

in the pooling layer, combine the features, and predict the effect in the fully connected layer. The 

output layer creates the SNR and RSSI predictions. The MATLAB app performs the last step. 

Define abbreviations and acronyms the first time they are used in the text, even after they have 

been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and rms do not have 

to be defined. Do not use abbreviations in the title or heads unless they are unavoidable. 

5. The Result for the Heat Effect 

The results of the Heat effect on the communications system in drone is divided into two parts, 

the first a measurement SNR the second a measurement RSSI. 

5.1. The Result of One-Dimension Convolution Neural Networks For SNR 

After completing the architectural model, dataset collection and loading, training, and regression 

phases, 1DCNN performs the regression training method for SNR Fig. 9, indicates that the training 

and tests have yielded good accuracy. The confirmed root-mean-square-error (RMSE) is 2.3954, so 

we can get a full picture of how well the CNN regression model predicts how temperature will affect 

the system of communications by measuring the SNR.We present these numbers in the method 

section. This lets us see how well we're doing and make changes as needed. Make the training results 

better by ensuring that the collection is equal, diverse, and larger. 

Fig. 10 shows the visualized predictions. The x-axis represents the true values, and the y-axis 

represents the predicted values. We notice the regression line crossing above the diagonal line 

(representing the good prediction). 

In Fig. 11, the predicted value that can be seen matches the real value. This means that our CNN 

model did well on the SNR measurement. We tested the system's overall performance after fine-tuning 

parameters such as epochs, batch size, and learning rate to achieve optimal performance. We used the 

parameters shown in Table 2 for the test. 

Table 2.  Evolution parameters of regression 

Parameters Value 

Mean square error  5.737 
Root mean square error  2.395 

Mean Absolute Error  17.313 

Root Mean Absolute Error  4.161 

Relative Error  0. 000087 % 

 

When you use CNN, we send the data through many layers, collecting data at each level and 

coming up with an estimate of the SNR as the end result. To extract basic traits from the input 

information, training uses kernel parameters. The convolutional neural network (CNN) was trained 

well, as shown by the validation (RMSE) of 2.3954. It made accurate predictions of the signal-to-

noise ratio (SNR) with little error. We notice that the SNR decrease when the temperature increase as 

shown in Fig. 12. 
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Fig. 9. Regression training process for SNR 

 

Fig. 10. Visualize prediction values vs. true values for SNR 



1050 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1037-1058 

 

 

Ahmed Hussein Abbas (Investigating the Influence of Temperature on UAV Signal Quality) 

 

 

Fig. 11. Pattern prediction values vs. true values for SNR 

  

Fig. 12. Graphical user interface for SNR result 

5.2. The Result of One-Dimension Convolution Neural Networks For RSSI 

Fig. 4 depicts the steps involved in training and testing the RSSI model. These steps include 

creating the structure of the model, gathering and uploading the dataset, and then training with 

regression stages. 
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Fig. 13 demonstrates that the training and tests have yielded good accuracy. The validated RMSE 

is 3.591, and measuring the RSSI gives us a full picture of how well the CNN regression model 

predicts how temperature will affect the communication system. This lets us see how well we're doing 

and make changes as needed. Enhance the training results by ensuring the collection is equitable, 

diverse, and expanded. Fig. 14 shows the visualized predictions. 

 

Fig. 13. Regression training process for RSSI 

 

Fig. 14. Visualize prediction values vs. true values for RSSI 



1052 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 3, 2024, pp. 1037-1058 

 

 

Ahmed Hussein Abbas (Investigating the Influence of Temperature on UAV Signal Quality) 

 

The x-axis represents the true values, and the y-axis represents the predicted values. We notice 

the regression line crossing above the diagonal line (representing the good prediction). In Fig. 15 the 

observed predicted value aligns with the actual value. This indicates that our CNN model performed 

well in its evaluation. To get the best performance, we tested the system's total performance after fine-

tuning parameters like epochs, batch size, learning rate, and so on. Table 3 displays the parameters 

used during the test. 

The 1DCNN method works by running data through many layers and learning new 

representations at each stage. The output is an RSSI prediction. We use kernel parameters during 

training to extract significant features from the original data. We obtain a validated RMSE of 3.5909, 

Indicating that CNN training went well and that the error rate in predicting RSSI was low. We notice 

that the RSSI decrease when the temperature increase as shown in Fig. 16. 

 

Fig. 15. Pattern prediction values vs. true values for RSSI 

 

Fig. 16. Graphical User Interface for RSSI Result 
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Table 3.  The Factors used to evaluate regression for RSSI 

Parameters Value 
Mean square error  12.895 

Root mean square error  3.5909 

Mean Absolute Error  2.9414 
Root Mean Absolute Error  1.7150 

Relative Error  0.000 735 % 

6. Discussion 

As mentioned in the introduction section, the majority of earlier research focused on using 

simulations or experiments to demonstrate how temperature affects drone communication systems. In 

order to assess how temperature affects a drone's communication system, this study uses a one-

dimensional neural network (1D CNN) to measure the signal-to-noise ratio (SNR) and received signal 

strength indicator (RSSI). Next, we use a drone laboratory to generate the dataset, which we then 

process and upload to our Convolutional Neural Network (CNN) model. To maximise the CNN 

model's performance, we adjust its parameters (epoch, number of iterations, batch size, etc.). The 

outcome implies that the temperature increase is being caused by the usage of high-frequency carriers 

and amplitude frequencies. There is limited capacity of 1DCNN to study the impact of temperature 

on communication networks. One dataset that 1DCNN trains on has performance communication 

system and temperature data. Acquiring this data in excellent quality and a wide range of variances is 

a difficult task. Unmanned aerial vehicles (UAVs) have special challenges in real-world operations, 

such unpredictable weather patterns. Restrict the model's ability to adapt to this problem by carrying 

out extensive training. 

7. Conclusion 

The aim of this work is to investigate the relationship between temperature and drone 

communication systems since it can impair the operation of wireless communication systems. We 

assess the communication system efficacy of the drone using measurements of the received signal 

strength indicator (RSSI) and signal-to-noise ratio (SNR). We forecast the RSSI and SNR by a 

convolutional neural network (CNN). The MATLAB App Designer produces an understandable 

graphical user interface after training and testing our model on the dataset of the drone laboratory. 

Temperature noise often increases with higher bandwidth frequencies. In other words, as the 

frequency travels farther from the carrier, the power spectral density of thermal noise rises. With 

thermal noise, distortion increases. Use a variety of strategies to enhance flight control algorithms, 

like PID (proportional integral derivative), mechanical isolation between the drone's frame and 

communication components, digital signal processing technology to reduce noise in received signals, 

and other strategies to lessen the impact of temperature on the drone's communication system.  It used 

materials like polyimide aerogel and glass fibres, which are lightweight and extremely insulating 

against heat, to build a protective structural enclosure. They coated it with a layer of highly reflective 

aluminum to keep heat from escaping. When exposed to high temperatures, the excellent insulation 

prevents materials from contracting and pore structures from deteriorating. 

Studies on the effects of temperature on communication systems with 1DCNN are not without 

limits. We use data from performance communication systems and temperatures to train 1DCNN. It 

is hard to find this kind of diverse and high-quality data. Changing conditions present unique 

challenges for UAVs operating in the real world. Hard training will reduce the model's capacity to 

adjust to this difficulty. Unlike other studies that gauge the UAV communication system's efficacy 

only through simulation, our contribution to this project is the application of 1DCNN. To improve 

performance, we propose optimizing system characteristics in this study, such as power transfer, by 

implementing a feedback loop between the CNN conclusion and the communication system. 

Furthermore, we investigate how different environmental factors, including wind and rain, affect UAV 

communication systems. 
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