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1. Introduction 

The rapid development of the construction sector and urbanization brings significant implications 

for electricity consumption, especially in high-rise residential buildings, which are crucial elements in 

urban structures [1]. The efficient use of energy has become an urgent necessity global climate change 

ARTICLE INFO  ABSTRACT 

 

Article history 

Received March 19, 2024 

Revised May 02, 2024 

Accepted May 08, 2024 

 The growing urbanization and the construction sector, efficient use of 

electric energy becomes important, especially the use of reactive power. If 

excessive use causes decreased efficiency and increased operational costs. 

Decreased efficiency contributes to increasing exhaust gas volumes and 

greenhouse emissions. Efficient energy can achieved if planning and 

predictions are correct. This research applies the GRU neural network 

method with grid search initialization as a novelty predictive model for 

energy-use high-rise buildings in form fast training without multiple 

iterations because optimal hyperparameters are obtained. Experimental 

show the MAE and RMSE performance metrics of the GRU better than 

LSTM in predicting energy consumption data peak loads, off-peak loads 

and reactive power. The accuracy of GRU predictions can optimize the use 

of energy to contribute to saving the environment from exhaust emissions 

and the greenhouse effect in urban systems. Experimental results 

demonstrate the superiority of GRU over LSTM, proof of the much lower 

MAE and RMSE values. This metric shows the accuracy of GRU in 

generalizing data both during peak and off-peak hours, as well as in 

reactive power usage. By Utilizing GRU's capabilities, building 

management can manage reactive power usage effectively, allocate 

reactive power resources appropriately, and mitigate peak load times and 

the power factor within the threshold, thus avoiding additional costs and 

electrical system efficiency and contributing to reducing the carbon 

footprint and gas emissions greenhouse. Research on GRU is widely open 

in the high-rise building sector, including its integration with sensors to 

automatically control energy use. 
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and demands for sustainable resources [2]. One crucial aspect of electricity consumption management 

is the utilization of reactive power in high-rise residential buildings. This factor can significantly 

influence system efficiency and energy costs, particularly during peak electricity demand periods 

within an electrical system. It's often during these peak energy demand moments that energy efficiency 

can either be enhanced or diminished [3], [4]. 

• Management Challenges: Peak load management is an important aspect of energy system 

sustainability [5]. When loads reach their peak, energy infrastructure faces significant pressure. 

Increasing operational costs, the risk of overload, and the potential for disruptions or power 

outages become issues that need to be addressed [6]. Effective strategies in managing peak loads, 

such as load scheduling and the use of cloud computing technology, can help optimize energy 

usage, reduce operational costs, and prevent energy supply failures or disruptions [7].  

• Role of Reactive Power in High-Rise Building Electrical Systems: There is a correlation between 

peak loads and reactive power that highlights the importance of optimizing reactive power 

settings; the system can effectively support line voltages, especially during peak loads [8]. 

Additionally, the implementation of time-based electricity tariffs can improve energy usage 

efficiency by providing price signals that reflect the actual production costs of electricity at 

specific times. Responsive electricity demand management, understanding reactive power, and 

the implementation of time-based tariffs are essential steps in managing peak loads and ensuring 

energy sustainability in the future [4], [9]. 

• Optimizing Reactive Power Management in High-Rise Residential Buildings: Previous research 

has highlighted the importance of reactive power management, but there are still shortcomings 

in understanding and accurately predicting reactive power usage during peak and off-peak 

conditions [8]. Data analysis approaches and advanced modeling techniques are used to develop 

predictive models that can identify patterns of reactive power usage in high-rise residential 

buildings during peak and off-peak periods [10]. By detailing the characteristics and variability 

of reactive power usage, it is expected to provide in-depth insights to building managers and 

electricity service providers on how reactive power can be optimized during peak and off-peak 

hours, thus contributing positively to energy efficiency, operational cost reduction, and the 

creation of a more sustainable environment [11].  

• Significance of the Predict Model: This relevance is not only in the context of managing high-

rise residential buildings but also in supporting a broader transformation towards more efficient 

and sustainable energy systems [12]. By understanding the dynamics of reactive power usage, 

proactive steps can be taken to improve energy performance and design more environmentally 

friendly buildings in the future. Accurate predictions of reactive power in the future, especially 

during low peak load times and off-peak loads, enable efficient resource management [11]. Deep 

learning techniques such as RNN and its various variants have been proven effective in producing 

accurate predictions, thus supporting sustainable planning and future technological innovation 

[13]. 

Recurrent Neural Network (RNN) is a part of deep learning that processes sequential inputs and 

stores information from the past [14]. RNN is used in many temporal processing applications and can 

store information for decision-making. Recurrent network models generally use column input vectors 

with weight matrices representing the relationship between neurons and features in the network [15]. 

There are three common types of RNN variants: LSTM, GRU, and Bidirectional. Each variant of 

RNN has its advantages and disadvantages [16]. LSTM is the solution for large and complex data, 

while GRU or bidirectional is the solution for smaller data. The architecture of the GRU model is 

simpler than Bidirectional [17]. GRU is one variant of RNN that allows its use to be more adaptive 

and efficient for various machine learning tasks and sequential processing that are not too large. GRU 

can be applied to sequential data or time series data [18]. The time series phenomenon is a 

phenomenon produced by an activity that has values and time sequences [19]. Time series are also 

often used in decision-making and planning in various fields because they can provide insights into 
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patterns and trends that may occur over a certain period [20]. The time series phenomenon also occurs 

in the consumption of electrical energy in a building [21], [22]. Electrical energy consumption is a 

time series phenomenon, so Deep learning models are relevant to be used as predictive models as 

previously applied by researchers [23]. So far, the management of electrical energy consumption in a 

building is based on daily data from a month ago and the present as material for deciding regulations 

regarding the availability and use of electricity in the coming month, especially in regulating the use 

of reactive power in the future [24]. The following is the advantages of the GRU model: 

• The GRU model can predict the future with not too large data and can be used to overcome the 

complexity and dynamics of high reactive power consumption data, thus helping estimate power 

needs at different times [22]. This solution can provide accurate information and assist building 

managers in designing more efficient energy management strategies [25], [26]. 

• Improving the Performance of the GRU Model in Predicting Reactive Power Usage GridSearch 

Initiation Approach. 

• The use of GRU with the initiation of GridSearch to predict reactive power usage is an important 

contribution to the field of electrical energy management. 

The following are several gaps in previous research summarized in Table 1. 

• The use of hyperparameter optimization with GridSearch initiation to predict the use of reactive 

power in a high-rise building can still be developed. 

• The Neural Network model performance in the previous research can be developed further 

especially in GridSearch initiation method to optimize hyperparameters GRU model performance 

for improving prediction accuracy of electrical energy management. 

• Previous research has not emphasized comparative analysis between the GRU model and other 

approaches. 

• In the previous research, GridSearch initiation was used and compare with other prediction 

models, such as LSTM and GRU. The result showed that the GridSearch is better than LSTM. 

Table 1.  Comparative research 

Reference Model Novelty Dataset Type 

[27] GRU AdaBoost different weightings Time series failure machine data 

[28] Combine Ensemble RNN, LSTM, GRU Economics times series data 

[22] GRU and LSTM Update gate Time series data 

[29] GRU and LSTM GridSearch Dataset sequential electrical tools 

[28] LSTM and GRU Ensemble Sequential Data 

[30] LSTM and GRU Arrange hyperparameter Noise dataset 

[18] GRU Internal parameter Economic dataset series 

[31] GRU Bidirect Text semantics 

[17] LSTM GRU Increasing layer and cells Human activation 

[16] GRU and LSTM Trajectory linearization different MPC schemes 

[32] GRU and LSTM 
Reviews methods for building 

energy consumption forecasts 
building energy consumption 

 

Through a literature review, it was shown that previous research has introduced various models, 

as displayed in Table 1. However, there remains a gap in enhancing the performance of prediction 

models. Specifically on reactive power consumption in buildings. The majority of previous studies do 

not specifically study reactive power in high-rise buildings, Even though reactive power is a crucial 

aspect of enhancing energy efficiency in urban settings. With gaps occurring, we propose a 

study focused on GRU predictive models initialized with GridSearch. This study compares GRU and 

LSTM models to ensure GRU is processing reactive power consumption better. 

Based on existing gaps, this research objective develops a neural network prediction model that 

can generalize across various data domains, to increase the efficiency of electrical energy use in high-
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rise buildings by using energy consumption data in buildings. Furthermore, the resulting prediction 

model, especially for the use of reactive power, can be used for building management decision-

making to increase energy efficiency and minimize operational costs. This research contribute to 

overcoming the use of reactive power due to bad planning and avoiding energy waste and greenhouse 

gas emissions. Therefore, neural network prediction models, especially the GRU model, are the 

subject of discussion as an option to contribute to overcoming environmental problems caused by 

energy use. 

Without an accurate prediction model, the use of reactive power will be excessive, which can 

lead to increased efficiency environmental damage and waste of energy. This happens when too much 

reactive power is used, the electrical system has to produce more energy than it needs, ultimately 

increasing energy consumption and greenhouse gas emissions. This not only increases operational 

costs but also negatively impacts the environment by increasing the carbon footprint and exacerbating 

climate change. Therefore, efficient reactive power management is important to preserve the 

environment. 

2. Method 

This research was built GRU predictive model to optimize the use of reactive power in highrise 

buildings. The research used methodology tools the Python library, with the steps of literature review, 

modelling and initiation, data processing, training process, experiment setup. 

2.1. Electricity Power Consumption Study 

The study begins by understanding the significance of reactive power consumption in multi-story 

buildings and its impact on operational costs and electrical network stability. Different types of power, 

including reactive power, active power, and apparent power, are defined and their significance in 

building energy management is highlighted. The consumption of reactive power during peak loads in 

multi-story residential buildings as the main consumers of electrical energy has a significant impact 

on the stability of the electrical network and operational costs [8]. This is represented by the following 

formula. In electricity, there are three types of power i.e., reactive power (Q), active power (P), and 

apparent power (S). 

𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑝𝑜𝑤𝑒𝑟: (𝑆) = 𝑃2 + 𝑄2 (1) 

𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟: (𝑄)  = 𝑉 𝑋 𝐼 𝑥 𝑠𝑖𝑛 ∅ (2) 

Current (I) is the current in the line, ∅ is the phase angle between Voltage and Current, Active 

power (P): Active power is measured in watts (W) and defined as the product of voltage, current, and 

the cosine of the phase angle between voltage and current. 

𝐴𝑐𝑡𝑖𝑣𝑒 𝑝𝑜𝑤𝑒𝑟: (𝑃)  =  𝑉 𝑋 𝐼 𝑥 𝑐𝑜𝑠 ∅ (3) 

𝑃𝑜𝑤𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟 =  
𝑃

𝑆
  (4) 

The fine (D) imposed on electricity users (buildings) for excessive reactive power usage can be 

calculated based on the difference between the actual reactive power (Qactual)  used and the maximum 

allowable limit (Qmax). An illustration of excess reactive power which causes additional costs in the 

form of fines is shown in Fig. 1. 

𝐷 = (𝑄𝑎𝑐𝑡𝑢𝑎𝑙) −  (𝑄𝑚𝑎𝑥) (5) 

The more the reactive power used, the smaller the power factor, the smaller the power factor, the 

lower the efficiency of the electrical system. Increasing reactive power during peak loads can cause 

significant power losses and require quick corrective action [33]. On the other, during off-peak loads, 
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inefficient use of reactive power can result in energy wastage, and suboptimal reactive power 

management can lead to inefficient energy usage and increasing operational costs for reactive power 

load [33]. Reactive power concept is analogous to force in a mechanical system, as illustrated in Fig. 

2. 

 

Fig. 1. Relationship between Excessive actual and maximum allowable limit reactive power 

 

Fig. 2. Analogy of reactive power with mechanical concepts 

Reactive power in electrical system, if likened to mechanical force, is illustrated in Fig. 2 this 

figure elucidates the force exerted (S) by the hand to pull the load, the force applied by the foot to 

initiate movement, and the upward force symbolizes reactive power (unused force). From this 

depiction, it becomes apparent that higher reactive power results in greater provided power, yet 

diminished power utilization renders the system less efficient [34]. 

2.2. Neural Network Study 

Neural Network is a category of Soft Computing science. Neural Networks actually adopt the 

ability of the human brain which is able to provide stimulation, carry out processes, and provide 

output. The output is obtained from variations in stimulation and processes that occur in the human 

brain. A recurrent neural network (RNN) is a type of artificial neural network architecture whose 

processing is called repeatedly to process input which is usually sequential data [35]. RNN is included 

in the deep learning category because data is processed through many layers.  

The RNN began with the familiar Artificial Neural Network (ANN) concept. The transition from 

ANN to RNN involves additional terminology in the hidden layer (h), where there is the presence of 

weighted metrics multiplied by input plus bias, and there is a difference, namely the addition of weight 
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metrics from one hidden layer to another [36]. The RNN concept builds upon the familiar ANN 

concept. In transitioning from ANN to RNN, additional terms are introduced in the hidden layer (h), 

where weighted metrics are multiplied by input plus bias. The key difference lies in the addition of 

weight metrics from one hidden layer to another. In the RNN architecture, the hidden layer (h) is 

linked to the previous hidden layer (h-1), resulting in an output similar to a regular ANN. The neural 

network calculates the previous hidden layer (ht-1) and incorporates it into the output. This process 

continues for each input, with each subsequent calculation incorporating the previous hidden layer. 

There are several types of RNN (Recurrent Neural Network) architectures used to model data 

sequences: 

𝐷 = (𝑄𝑎𝑐𝑡𝑢𝑎𝑙) −  (𝑄𝑚𝑎𝑥) (6) 

2.3. Get Recurrent Unit 

GRU is a type of recurrent neural network that was developed to overcome the difficult training 

and long-term memory problems in RNN, but still has the ability to handle the problem of long-term 

dependencies in serial data [32]. The GRU structure is shown in architecture by combining several 

gates into one "update" gate as presented in Fig. 3. GRU has two main Gates [18], [31], [32], [37]. 

 

Fig. 3. Architecture of GRU [32] 

The formula for determining how much information from the past will be forgotten is Reset Gate 

(𝑟𝑡). 

𝑟𝑡 = 𝜎(𝑤𝑧. [ℎ𝑡−1, 𝑥𝑡]) (7) 

The reset gate controls forgetting old information, aiding the network to focus on relevant data. 

Meanwhile, the update gate manages the retention of past information while integrating new data, 

ensuring the GRU adapts to new insights while retaining valuable past knowledge. The formula 

Update Gate (zt) is used. 

𝑧𝑡 = 𝜎(𝑤𝑧. [ℎ𝑡−1, 𝑥𝑡]) (8) 

𝑧𝑡 is similar to a gate controlling information flow from the past to the present in the network. It's 

similar to deciding how much of a previous conversation we retain before accepting new information, 

if relevant the gate opens widely, if not it remains partially open or shuts completely. The sigma (σ) 

function acts as an activator, adjusting the weight of past and current inputs. A higher output means 

more past information is retained or ignore. This analogy clarifies how GRU gates manage 

information flow within the network. Represents the value proposed to become a new hidden state, 

namely Candidate Hidden State (ht) 

ht = tanh(w. [rt⨀ ht−1, xt])  (9) 
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ht is a search or exploration process in the cell to find new hidden state candidates. The 

hyperbolic tangent function (tanh) acts like a filter that regulates how much the candidate is relevant 

and worthy of becoming a new hidden state (ht). Sigma (σ) represents exploration activity, while dot 

product (⨀) indicates the association between the previous hidden state (ht-1) and the current input (xt) 

with the new candidate under consideration. The larger the product, the more significant the 

candidate's contribution to the new hidden state. The next stage is the Hidden state which is determined 

by information from the candidate's hidden state and updated gate. 

ht = (1 − zt)⨀ ht−1⨀ h̃t  (10) 

2.4. Long Short Term Memory (LSTM)  

Long Short Term Memory (LSTM) is a type of RNN specifically designed to solve the problem 

of vanishing or exploding gradients. By using a gate mechanism, LSTM can select relevant 

information to store or delete from memory cells [32], [38]-[42]. The working principle of LSTM 

(Long Short-Term Memory) is based on its structure consisting of interconnected memory cell units. 

Each memory cell has three main gates: the forget gate, the input gate, and the output gate shown Fig. 

4. 

 

Fig. 4. Architecture of LSTM [15] 

Forget Gate (ft) determines how much information from the previous memory cell will be 

forgotten or retained. It helps LSTM to "forget" irrelevant information from the past, enabling the 

model to focus on relevant information. The forget gate formula is: 

𝑓𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (11) 

Input Gates (it) decides how much new information will be stored in the memory cell. The Input 

Gate formula  

𝑖𝑡 = 𝜎(𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (12) 

It allows LSTM to incorporate new information into memory based on the current input. Output 

Gate (Ot) is control gate that is the output produced by the memory cell. It helps LSTM to select which 

information will be passed to the next layer in the network. The formula Output Gate. 

𝑂𝑡 = 𝜎(𝑤𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13) 

In addition to these gates (Ct), LSTM also has internal memory cells that store both short-term 

and long-term information. These memory cells aid LSTM in overcoming the vanishing or exploding 

gradient problem common in traditional recurrent networks. The update state formula. 

𝐶𝑡 =  𝑓𝑡 ∙ 𝐶𝑡−1 +  𝑖𝑡 ∙ �̃�𝑡 (14) 
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2.5. Units 

Advantages and disadvantages GRU and LSTM shown in Table 2. 

Table 2.  Advantage and disadvantage of GRU and LSTM 

Comparison item LSTM GRU 

Data series input 

capability 
Capable of capturing long sequences 

Less able to capture long 

sequences 

Vanishing gradient Controlled Resolved 

Over fitting prone Prevent 

Computation complicated Simple 

Temporal data 

adaptation to temporal patterns, 

LSTM has been proven to be 

effective in handling complex 

temporal data 

Suitable for short time series, 

suitable for text data 

Hyper parameter Necessary setting Necessary setting 

Memory cells 

Address long-term dependency 

issues well and retain relevant 

information from the past 

Managing long-term 

dependency problem 

memory cells and 

remembering relevant 

information from the past 

Data set Capable of large time series datasets Fits small data sets 

Internal architecture Necessary setting Necessary setting 

2.6. Data Processing 

Data processing is carried out before training, namely by ensuring the data structure whether 

there are potential problems such as data inconsistencies, imbalances, or incompatible formats that 

can be resolved which reduces the effectiveness and accuracy of the model being trained. In data 

processing, validation of the time series data format is also carried out to ensure the readiness of the 

data for time series analysis regarding the suitability of the date and time of the data which must be 

arranged based on time. To ensure that the data is consistent over time intervals, the data is visualized 

with Time Stamps in daily, weekly, and monthly terms. Fig. 5 shows the data processing steps. 

 

Fig. 5. Steps of data processing 

2.6.1. Data Format Adjustment 

Data processing is carried out before data training. In data processing, it is ensured that the data 

is structured by the GRU Model to avoid data inconsistencies, imbalances, or incompatible formats 
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that can be overcome, by dealing with problems of missing data and outliers in the data. Next, the 

training material data that has been arranged is validated in a time format that is arranged based on 

time. The data is also split for training materials and testing materials, while to adjust the scale of the 

12 existing data variables to be uniform to make the training process easier, the data is converted into 

a time series and normalized. 

2.6.2. Data Format Validation 

Adjusting the data format before the training process is adjusted to the structural needs of the 

GRU Model to avoid data inconsistencies, integration, or incompatible formats which can be 

overcome, by dealing with problems of missing data and outliers in the data. Furthermore, the training 

material data that has been prepared is validated in a time format arranged based on time. The data is 

also separated for training material and test material, to adjust the scale of the 12 existing variable data 

so that it is uniform so that the training process is easier, the data is converted into a time series and 

normalized. 

2.6.3. Data Splitting 

Before training, the data is split into several different subsets: 80% is used for training input-

output pairs, and 20% is for testing. The testing subset is utilized to assess the model's performance 

after training is completed. The testing data subset is to estimate how well the model will perform on 

new, unseen data. 

Adjusting the data format before the training process is adjusted to the structural requirements of 

the GRU Model to avoid data inconsistencies, integration, or incompatible formats which can be 

overcome, by dealing with problems of missing data and outliers in the data. Furthermore, the training 

material data that has been prepared is validated in a time format arranged based on time. The data is 

also separated for training material and test material, to adjust the scale of the 12 existing variable data 

so that it is uniform so that the training process is easier, the data is converted into a time series and 

normalized. 

2.6.4. Data Sequentiality Testing 

The data is validated for the existence of patterns or trends over time and ensures that the time 

structure is set correctly in statistical analysis or modeling, sequential tests are carried out on the data 

that will be used as training data. 

The sequential testing process of the GRU prediction model begins by generating sequential data 

and converting it into a NumPy array in the Python library using np.array(). This data serves as a time 

series dataset for sequential processing. Next, a function is created to divide the data into different 

orders. In a loop that iterates over data indices, a long sequence seq_length is created by truncating 

the corresponding data. This sequence is then added to the list. The sequences are divided into training 

and test sets. The split_ratio variable determines the proportion of data allocated for training, while 

the split_index variable computes an index for splitting sequences based on this ratio. The sequence 

is divided into X_train and y_train, representing the target input and output features for training, 

respectively. Similarly, X_test and y_test are created for testing purposes [43]. 

In the next step, the input data is reshaped to meet the requirements of the GRU model, which 

expects input in three dimensions: (number of samples, number of time steps, and number of features). 

Since the data only has one feature per sequence, the third dimension is set to 1. Finally, the training 

and test data forms are printed to ensure that the data has been properly prepared for use in the GRU 

model. 

2.6.5. Data Normalization 

Normalization is a method for changing the scale of variables in order to speed up and compress 

neural network algorithms [44]. The data to be trained or used as training material and to be tested or 

used testing consists of variables with different scales, such as WBP, LWBP, and other data with 

varying dynamic ranges. Therefore, in the training process using deep learning, GRU requires uniform 

scaling (normalization). In this case, the normalization method employed is Min-Max Scaling. With 
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this method, the data values are adjusted to fit within a specified range, typically between 0 and 1. The 

formula for Min-Max Scaling is as follows: 

xNorm =
x − xmin

xmax − xmin
 (15) 

where x is the original data value, xNorm is the normalized data value, xmin is the minimum value in 

the data set, and xmax is the maximum value in the dataset. 

2.6.6. Metric Evaluation 

Mean Absolute Error (MAE) used to measure model performance when testing prediction results 

on test data or data that was not used during training. The use of MAE in the testing phase is to evaluate 

the scop to which the model is able to generalize to new data that was never seen during training. 

Referring to researchers who have used prediction accuracy evaluation, namely Mean Absolute Error 

(MAE) and Root Mean Square Error (RMSE) [45]. Prediction performance is determined generally 

using prediction accuracy evaluation, namely Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE) are used as the prediction accuracy evaluation. MAE is calculated in a similar way to 

during training, but this time comparing the model predictions to the actual values on the test data 

[46], [47]. 

𝑀𝐴𝐸 =
1

𝑛𝑡𝑒𝑠𝑡
∑ |𝑋𝑖 − 𝑌𝑖|𝑛𝑡𝑒𝑠𝑡

𝑖=1   (16) 

The formula for Root Mean Squared Error (RMSE) is as follows [47], [48]: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑋𝑖 − 𝑌𝑖)2

𝑛𝑡𝑒𝑠𝑡

𝑖=1
 (17) 

where ntest is the number of samples in the test dataset Yi is the actual value for sample i in the test 

dataset. Yi is the value predicted by the model for the ith sample in the test data set and the value 

predicted by the model for the ith sample. Based on both formula, the minimum value is 0, while 

there is no limit to the maximum value because they are an absolute measure of prediction error. The 

smaller they value, the better the model is at predicting the data. 

2.7. Training and Testing Process 

This research uses a prediction neural network principle, namely Gated Recurrent Unit (GRU) 

and compare it with the Long Short Term Memory (LSTM) method which are compared with 

recurrent neural network. Both models undergo an optimization process using the Adam algorithm, 

ensuring fast and efficient convergence in learning. Next, hyperparameter tuning was carried out to 

find the best combination of parameters in both models, namely by using the GridSearch method, with 

a focus on adjusting the number of neurons and layers. 

The training process was done in stages using data on energy consumption during peak load 

(wbp), energy consumption during off-peak hours, and reactive power consumption (kVh) data as 

prediction output targets. The process of training a GRU model using the grid search method involves 

several steps. The following is an explanation of this process [32], [39]. 

Training models 

• Data were prepared according to the requirements of the GRU model 

• Hyperparameters are determined in advance through gridsearch, including number of layers, 

learning rate, optimization type, loss function and epoch 

• The Grid search was done to find the optimal combination of previously determined 

hyperparameter values. 
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• After the optimal hyperparameter combination was found via grid search, the GRU model was 

trained using the training data. The training process is carried out using an optimal combination 

of hyperparameters. 

Testing Models 

• The data was prepared according to the requirements of the GRU model, the same as when 

preparing training data, including normalization and sequence formation 

• After the test data is prepared, the data is fed into the trained GRU model to make predictions. 

The model will predict. 

• After getting the predicted values, the model performance is evaluated using the mean Absolute 

Error (MAE) and Root Mean Square Error evaluation metric.  

• The results of the testing process are analyzed to conclude the effectiveness of the GRU model 

in making predictions on previously unseen data 

The goal of these steps is to produce optimal predictions, improve accuracy, and make a 

significant contribution to energy efficiency and more effective power management. The following is 

a diagram of the research steps in Fig. 6. 

 

Fig. 6. Step of research 

2.7.1. Initialization 

A statement in a journal, initialization can produce stable and fast training for networks with 

weight distribution [49]. The mathematical formulation for GridSearch involves an objective 

function f(p), where p is a parameter vector to be optimized. The search aims to find the combination 

of parameter values that minimize or maximize the objective function. Assuming there are n 

parameters to be optimized [50]. 

Fig. 7 illustrates the proposed architecture in this study, employing GridSearch initialization on 

the GRU model to discover the optimal combination of weight and bias parameters for enhanced 

prediction accuracy. The initiation process for GridSearch is as follows: The GRU model is first 

defined using the TensorFlow library. GridSearch is then defined using the scikit-learn library. 

Subsequently, the training and testing processes for produce prediction outputs. 
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Fig. 7. The architecture of neural network GRU GridSearch 

2.7.2. GridSearch Neural Network Architecture 

First, determine the set of possible values for each parameter. If M1 possible values for the first 

parameter, m2 values for the second parameter, and so on up to the nth parameter [51], where mi 

represents the number of values for the ith parameter. 

Then, consider all combinations of these parameter values. The total number of combinations 

to be tested is m1 × m2 ×⋯×mn. For each parameter combination, evaluate the objective function 

f(p) and record the resulting value.  After evaluating all combinations, determine the parameter 

combination that yields the minimum or maximum value for the objective function. Thus, 

mathematically, GridSearch can be represented as follows initialize the set of values for each 

parameter. For each parameter combination, evaluate the objective function and record the resulting 

value. Then, select the parameter combination with the minimum and maximum values from the 

evaluation results [52]. 

2.7.3. Model Initialization 

The process of initiating the search for the most optimal combination of bias values and weight 

values uses the GridSearch algorithm which has the following process. Define the GRU model 

defined as a function 〖(f〗_αb) with parameter α,b as weight and bias of the GRU model if {a, b} 

〖{α,b}={(α〗_1,α_2,α_3,…,α_n),(b_1,b_2,b_3,…b_1)} and n is the number of weight and bias 

parameters to be optimized. 

The GridSearch Initialization process aims to find the optimal combination of weight and bias 

values in the GRU model using a grid search algorithm [53]. The first step is to define the GRU 

model. GRU is defined as a function 〖(f〗_αb) with parameter α,b as weight and bias of the GRU 

model if {a, b} 〖{α,b}={(α〗_1,α_2,α_3,…,α_n),(b_1,b_2,b_3,…b_1)} and n is the number of 

weight and bias parameters to be optimized. Referring to equation (6), if bn = 0, then there will be 

no contribution from bias to the output, and if W=0, then there will be no contribution from weight 

to the output. Thus, the output (y) will heavily rely on the input (x) and the previous hidden state 

(ht−1). This implies that the GRU model may not be able to produce accurate predictions if no 

patterns are found. Therefore, the range of weight and bias values is greater than 0 (zero). 

Before running training with GridSearch initialization, several hyperparameters are determined 

before. The following are the hyperparameters that influence the neural network model include: 

• Defining the param_grid dictionary involves structuring data in the form of a dictionary 

containing a list of parameters to be tested and the values to be tried for each parameter during 

the process of finding the best parameters using GridSearch. 

• In this study, it is deemed best to evaluate the 'n_estimators' parameter (the number of estimators 

in the model) with values of 50, 100, and 200. This means that we will search for the best value 

for 'n_estimators' by trying values of 50, 100, and 200. 
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• The best value for 'max_depth' is a parameter that controls the maximum depth of the decision 

tree in the model, with options of None, 10, and 20. A value of 'None' indicates no limitation, 

while values of 10 and 20 determine the maximum allowed depth. By trying out these values, 

we can assess the complexity of the model in various ways. 

• During each iteration, one part of the data will be used as the testing data, while the rest will be 

used as the training data. By using this cross-validation method, we can measure the model's 

performance more reliably and reduce the risk of overfitting or overgeneralization. In this study, 

cross-validation is set to 5, meaning the data will be divided into 5 equally sized parts, and the 

training and testing processes will be repeated 5 times. During each iteration, one part of the 

data will be used as the testing data, while the rest will be used as the training data. 

In the article [54], [55], one of the obstacles faced is determining the optimal hyperparameters 

for the LSTM model used in predicting electrical loads, that finding the optimal number of hidden 

layers and number of neurons is a difficult and non-deterministic problem. 

2.8. Experimental Setup and Data Acquisition 

The data to be used for training comes from an apartment where the electricity measurements 

are taken at the MDP (Main Distribution Panel) on the Medium Voltage side. The energy usage 

measurement process is depicted in Fig. 6. Measurements are conducted using digital kWh meters, 

kVARh meters, ammeters, voltmeters, and power factor meters. The electrical parameters read by 

the measuring devices are in units of kilowatt-hour (kWh), kilovolt-ampere reactive hour (kVARh), 

amperes, volts, and power factor, respectively, at the Main Distribution Panel (MDP) position. The 

MDP is located in the Medium Voltage 20kV cubicle area, which represents the customer's 

workspace at State Electricity Company (PT Perusahaan Listrik Negara). This cubicle area is 

positioned at the medium Voltage 20 kV (primary transformer) location. Table 3 presents the data, 

which has been given new identities. These are shown in the form of a table excerpt. The data is 

recorded every day at 8:00 PM. 

Table 3.  Terminology dataset acquisition 

Data set acquisition Information Variable identity 
Energy consumption during peak 

load 

Electricity usage during high-demand times; optimizing 

energy resources. 
wbp 

Energy consumption during off-

peak load 

Electricity usage during low-demand periods; minimal 

energy consumption. 
lwbp 

Reactive power consumption Reactive power utilization in electrical systems kvh 

Current line 1 Electrical current flowing electrical cable 1. I1 

Current line 2 Electrical current flowing electrical cable 2. I2 

Current line 3 Electrical current flowing electrical cable 3. I3 

Voltage line 1 Voltage in electrical cable 1 V1 

Voltage line 2 Voltage in electrical cable 1 V2 

Voltage line 3 Voltage in electrical cable 1 V3 

Current reactive 1 Electrical reactive current flowing electrical cable 1 I1h 

Current reactive 2 Electrical reactive current flowing electrical cable 2 I2h 

Current reactive 3 Electrical reactive current flowing electrical cable 3 I3h 

2.9. Data Characteristics Type and Dimensions 

The data collected has the characteristics of time series data. This characteristic can be seen 

from the presence of the date and time column (Date Time) as an index or feature in the dataset.In 

this case, the data of  variables measured in date and time, electrical power consumption (wbp, lwbp, 

kvh), voltage (v1, v2, v3), and current (I1, I2, I3). The data dimensions are 11 variables (wbp, lwbp, 

kvh, v1, v2, v3, I1, I2, I3, I1h, I2h). There are 340 different dates as index or time columns. Therefore, 

the data dimensions are 340 rows and 11 columns. 

The data a date or string (Date Time) which represents the date or time. Numerical variable data 

(wbp, lwbp, kvh, I1, I2, I3, Ih1, Ih2, Ih2, V1, V2, V3) is a decimal number (float) data type. . The 
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data set shows the characteristics of time series data. This can be seen from the date and time column 

(Date Time) which functions as an index or feature in the dataset. 

The dimensions of the given dataset are 11 variables (wbp, lwbp, kvh, v1, v2, v3, I1, I2, I3, I1h, 

I2h). There are 340 different dates serving as indices or time columns. Therefore, the data dimensions 

are 340 rows and 11 columns. Each row in the collected dataset represents observations made daily, 

thus the data frequency is per day. 

The data acquisition process is shown in Fig. 8. The data is obtained through a Digital kWh 

Meter located in the Main Distribution Panel (MDP) of a 20 kV Medium Voltage system in an 

Apartment Building in Jakarta, Indonesia. The digital kWh data is monitored and recorded every day 

at 20:00. The data used in this study ranges from January 1, 2022, to December 7, 2022. The recorded 

sample data is presented in Table 4. This data is a conversion of the log sheet data of the electricity 

manager's daily records. 

 

Fig. 8. kWh meter position for data acquisition 

Table 4.  Actual data 

Variable 
Date Time 

01/01/2022 02/01/2022 03/01/2022 Date 06/12/2022 07/12/2022 
wbp 0.72 0.74 0.69 … 0.78 0.78 

lwbp 3.06 3.06 3.06 … 3.51 3.46 

kvh 1.02 1.02 1.06 … 1.07 0.98 

v1 58.126 58.567 58.226 … 58.56 58.59 

v2 58.125 58.873 58.527 … 58.867 58.82 

v3 58.352 58.97 58.62 … 58.965 58.87 

I1 0.8272 10.217 0.9044 … 10.286 1.141 

I2 0.8327 0.8952 0.7716 … 0.8721 0.993 

I3 0.8086 0.9021 0.8965 … 0.9272 1.026 

I1h 14.072 60.563 52.556 … 98.296 9.351 

I2h 14.54 67.802 60.816 … 10.783 94.177 

2.10. Preprocessing Data 

From the data source Table 4, there are 12 variables, each of which will be assigned a new 

identity. Out of these 12 variables, 3 data variables will serve as the main features of interest in this 

prediction. They are energy consumption during peak load with the identity 'wbp', energy 
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consumption outside peak hours with the identity 'lwbp', and reactive energy consumption with the 

identity 'kvh'. The other nine data variables function as features to predict the target variables. After 

ensuring the data segregation, further research steps will be conducted for analysis. 

For the GRU model training process, Table 4 data is converted into time series data. Converting 

time series data into a single-column feature format involves transforming it into three dimensions 

(number of samples, number of time steps, and number of features). Table 5 shows the results from 

set features for one input out of 12 inputs. Input prediction at peak load time (wbp), off-peak load 

time (lwbp) and active power (kVh). 

Table 5.  Feature input 

Time step 
Series Value 

1 2 3 4 5 6 7 8 9 10 11 

01/01/2022 0.72 3.06 1.02 58.126 58.125 58.352 0.8272 0.8327 0.8086 14.072 14.54 

02/01/2022 0.74 3.06 1.02 58.567 58.873 58.97 10.217 0.8952 0.9021 60.563 67.802 

03/01/2022 0.69 3.06 1.06 58.226 58.527 58.62 0.9044 0.7716 0.8965 52.556 60.816 

… … … … … … … … … … … … 

06/12/2022 0.78 3.51 1.07 58.56 58.867 58.965 10.286 0.8721 0.9272 98.296 10.783 

07/12/2022 0.78 3.46 0.98 58.59 58.82 58.87 1.141 0.993 1.026 9.351 94.177 

2.10.1. Setting up Data Subset for Prediction Model 

The subset used consists of available columns, 'lwbp', 'kvh', 'v1', 'v2', 'v3', 'I1', 'I2', 'I3', 'I1h', 

'I2h', 'I3h'. The values from the dataset are used to convert the Pandas data frame into a numpy array, 

resulting in variable 'X' containing a numpy array containing the values of the selected features, 

which will be used as input (independent variables) for the prediction model [23]. 

Features are observed data used as input for the model (X1,X2,X3).The target variables 

(Y1,Y2,Y3) or dependent variables that we want to predict are 'wbp', 'lwbp', and 'kvh', which are 

energy consumption during peak load, energy consumption during off-peak hours, and reactive 

power usage, in the follow. 

X1 = dataset[['lwbp', 'kVh', 'v1', 'v2', 'v3', 'I1', 'I2', 'I3', 'I1h', 'I2h', 'I3h']].values 

Y1 = dataset['wbp'].values 

X2 = dataset[['lwbp', 'kVh', 'v1', 'v2', 'v3', 'I1', 'I2', 'I3', 'I1h', 'I2h', 'I3h']].values 

Y2 = dataset['lwbp'].values 

X3 = dataset[['lwbp', 'kVh', 'v1', 'v2', 'v3', 'I1', 'I2', 'I3', 'I1h', 'I2h', 'I3h']].values 

Y3 = dataset['kVh'].values 

Energy consumption during peak load, off-peak load and reactive power consumption have 

unique data phenomena and are seasonal and fluctuating so they are used as prediction targets, while 

voltage tends not to have large fluctuations. 

2.10.2. Modeling Data for GRU Model 

Converting time series data into a single-column feature format involves transforming it into 

three dimensions (number of samples, number of time steps, and number of features). It is as follows 

in Table 3 result from the set features one input out of 12 inputs. Input prediction at peak load time 

(wbp), off-peak load time (lwbp), and active power (kVh). A flowchart of algorithm implementation 

in the program and a machine learning pipeline GRU model for time series analysis and prediction 

is presented in Fig. 9. 

According to Fig. 9, the algorithm steps is as follows: the algorithm loads a time series dataset, 

preprocesses it, and visualizes the data. It then splits the dataset for training and testing, trains linear 

regression and Random Forest models GridSearch initialization, and normalizes the data. 

Additionally, it trains a GRU and LSTM model for time series prediction, evaluates model 
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performance, and visualizes predictions. By stopping training when performance on the validation 

dataset begins to decline, early stopping helps prevent the GRU model from overfitting the GRL 

LSTM Bidirect neural network model. The final part of Fig. 9 is an evaluation of the performance of 

the model that has been built, using MAE and RMSE, namely to see the average mean absolute error 

and how well the model is affected by large errors. The actual data whose features have been adjusted 

is normalized using the min max formula, this is because the dataset processed is positive numeric 

data so the range used is 0 to 1. 

2.11. Handling Missing and Outlier Data 

The handle outliers in this study, data normalization is utilized as a technique to correct scale 

differences among features, ensuring more consistent and effective utilization of the model. This step 

not only enhances performance but also directly assists in managing outliers that may affect the 

analysis outcomes [56]. 

In this research, the initialization is done with grid search, which utilizes the Random Forest 

algorithm. Random Forest excels at handling missing data due to its non-parametric nature. It 

employs ensemble learning to prevent overfitting and maintains performance even with missing data. 

Additionally, Random Forest effectively handles non-linear relationships and variable interactions, 

enabling reliable imputation of missing values. The missForest method iteratively imputes missing 

values using Random Forest models until convergence. Unlike traditional methods, Random Forest 

does not rely on parametric assumptions, providing flexibility in handling missing data [57]. 

2.12. Contribution and Research Method Conclusion 

Conclusions of this research method begin with a literature review. Then the model design is 

adjusted to the data on the characteristics of high-rise buildings. Improved performance using the 

GridSearch model. The data obtained is a collection of relevant data. Ensure generalization of the 

model with cross-validation (Testing with test data) and three different target data. Performance 

metrics with MAE and RMSE and comparison with LSTM. Analysis of how the implications of the 

best model built answer the goal of achieving energy consumption efficiency and contributing to 

reducing the effects of greenhouse gases in cities. Based on the methodological description above, 

this research has the following contributions and a novelty in research for neural network for reactive 

power in high-rise building. 

• Technology Contribution: This research contributes to energy management technology in high-

rise buildings. By using the GRU prediction results from GridSearch initialization, the results 

of electricity operational planning are more certain. So that the resulting planning is useful in 

operating the electricity system efficiently. 

• Contribution to science: Utilizing the GRU model and GridSearch initialization contributes to 

combining two scientific methods which makes it easier to obtain new datasets of prediction 

results using computer equipment that is not too high-spec. 

3. Results and Discussion 

After ensuring that the data exhibits seasonality and fluctuations at each time stamp, making it 

suitable for training and testing according to the methodology's steps, training and testing were 

conducted on the acquired data using GRU and LSTM models. The testing results on 20% of the 

acquired data are represented by evaluation metrics such as MAE and RMSE. Additionally, visual 

representations of the prediction outcomes for each variable are depicted in Fig. 14, Fig. 15, Fig. 16, 

Fig. 17. 

3.1. Authors and Affiliations 

All the data to be trained is visualized in a time series with monthly timestamps, and the results 

can be seen in plot form. Training material data on energy consumption during peak loads is shown 

in Fig. 10. Fig. 10 shows the data describe daily fluctuations in peak electricity usage, which reflects 
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energy consumption patterns that are influenced by human activities, weather, and habits. This data 

fluctuation shows that this data can be used as training and testing data for the GRU model as a 

method for recognizing the use of data patterns. Fig. 11 shows the data to be trained visualized in a 

time series with monthly timestamps of energy consumption at off-peak load times. Based on this 

visualization, off-peak load time data can be trained with the GRU model in order to produce accurate 

predictions. 

 

Fig. 9. Pipeline for time series analysis and prediction 

Fig. 12 shows the results of the visualization of reactive power consumption data, which will be 

used for training and testing. In the plot, it looks like there is outlier data, but the data is still on a 

reasonable scale, namely between 0.5 and 2 kVAR (kilo Volt Ampere Reactive), so it can still be 

used as prediction material. 
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Fig. 10. Visualization of energy consumption during peak load 

 

Fig. 11. Visualization of energy consumption during Off-peak load 

 

Fig. 12. Energy consumption reactive power data visualization 
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3.2. Input-Output Relationship to Obtain Targets 

Three datasets have different input and output characteristics, yet all share the same 11 features 

in the overall dataset. 

• The first set of input, X1, consists of features such as 'lwbp', 'kvh', 'v1', 'v2', 'v3', 'I1', 'I2', 'I3', 

'I1h', 'I2h', and 'I3h'. These features represent variables that may influence energy consumption 

during peak load. The corresponding target variable (Y1) is 'wbp', which represents energy 

consumption during peak load data. Therefore, the relationship between input and output is that 

the model will use these features to data predict energy consumption during peak load.  

• The second dataset of input i.e. X2, is identical to X1, but the target variable (Y2) is 'lwbp' 

represents energy data consumption during off-peak hours. Therefore, the relationship between 

input and output will using model of these features to data predict energy consumption off-peak 

load 

• The second dataset of input i.e. X3, is identical to X1 and X2, but the target variable (Y3)  is 

'kvh' represents  data reactive power consumption.  Therefore, the relationship between input 

and output will using model of these features to data predict energy consumption reactive power. 

The relationship between inputs (features) and outputs (target variables) in this case is that GRU 

and LSTM models use observed to predict target variables. Model performance is measured using 

MAE and RMSE metrics, which provide an idea of how accurate the model predictions are in 

comparing the predicted values with the actual values of the target variables. 

3.3. Result in Visualization and Performance Models 

After designing the research model, this study delves into utilizing data to train the GRU and 

LSTM models, subsequently evaluating the generalization capacity of each model with previously 

unseen data (20% of the dataset). The prediction targets include peak load, off-peak load, and reactive 

energy data. Each outcome is depicted through a graph that compares predicted results with actual 

data, while the performance of each prediction is assessed using the MAE and RMSE metrics. 

A graph of test results of the GRU prediction model with data that the model has never seen 

before (20% of the actual data) for the energy consumption variable during off-peak loads is 

presented in Fig. 13. The x-axis in this figure displays timestamp data per 10 days. In line with the 

graph in Fig. 14 GRU model test performance metrics produce MAE values of 0.00205, and RMSE: 

0.00316. It can be seen that GRU's predicted data and actual data is coincide at all time stamps 

indicate that GRU's predictions for energy consumption data during off-peak loads is accurate. 

The results of predicting energy use at peak load times using the GRU model tested on 20% of 

the data produce an MAE of 0.00205 and an RMSE of 0.00270. A graphical representation of this 

condition, along with the time stamp, is depicted in Fig. 15. This figure shows the prediction results 

reshaped to 10 days on test data showing that the time stamp of the prediction results coincides with 

the real data even though it does not yet coincide 100 percent. 

The energy consumption during peak load is also predicted using the LSTM model for 

comparison. Fig. 16 depicts the energy usage graph during peak load generated by LSTM, resulting 

in an MAE of 0.00471 and RMSE of 0.00654. The prediction results between GRU and LSTM for 

energy consumption during peak load as depicted in Fig. 15 and Fig. 16 indicate that GRU still 

outperforms LSTM. 

The prediction result of GRU for reactive power values represented in MAE of 0.00292 and 

RMSE of 0.00842. Fig. 17 is the prediction result of GRU compared to actual data.  Fig. 18 is the 

prediction result of LSTM compare to actual data.  It indicate that the two graphs show that GRU is 

more resistant to outlier data compared to LSTM that is timestamp position 54 of the test data. 

The prediction results using the LSTM model for the reactive power consumption variable yield 

an MAE of 0.00325 and RMSE of 0.00898, with fluctuations between the actual data and the 
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prediction results shown in Fig. 18. From this figure, it can be observed that at timestamps 50 and 

60, the prediction errors are quite significant, resulting in a larger RMSE for the LSTM model 

compared to the GRU model, and ultimately leading to a larger MAE as well. In this case, the GRU 

model performs better in predicting the reactive power consumption in the building compared to 

LSTM. 

 

Fig. 13. Comparison of actual off-peak load data and GRU predicted 

 

Fig. 14. Comparison of actual Off-peak load data and LSTM predicted 

 

Fig. 15. Comparison of actual peak load and GRU predicted 
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Fig. 16. Comparison of actual peak load data and LSTM predicted 

 

Fig. 17. Comparison of actual Reactive Energy data and GRU predicted 

 

Fig. 18. Comparison of actual reactive Energy and LSTM predicted 

3.4. Analysis Performance of the Proposed Model 

The analysis of the Gate Recurrent Unit (GRU) Artificial Neural Network prediction model 

using GridSearch indicates its successful prediction and robust generalization on 20% of the dataset 

relocated for testing, Covers data variables such as peak load, off-peak load, and reactive power. The 

GRU model's predictions are accurate over the LSTM model. Table 6 shows a comparison of the 

performance metrics of the GRU and LSTM models for energy consumption data variables during 

peak load, off-peak time and reactive power consumption. 

The prediction results for reactive power consumption, peak and off-peak energy consumption 

variables using both GRU and LSTM models demonstrate trends and patterns consistent with the 
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actual data, including outliers. Visualization and evaluation metrics such as MAE and RMSE show 

that GRU outperforms LSTM for all data variables. The handling of outlier data is addressed by 

normalizing the data before training and testing, and GRU possesses inherent capabilities in dealing 

with outlier data. Based on previous research analysis that the GRU model has processing and 

sequential capabilities, the results of previous research analysis are shown in Table 7. 

Table 6.  Comparison of metric performance between GRU and LSTM across various variables 

Variable Data Model 
Performance Metric 

MAE RMSE 

Energy consumption during peak load 
GRU 0.00204 0.00315 

LSTM 0.00315 0.00204 

Energy consumption off-peak load 
GRU 0.00205 0.00270  

LSTM 0.00471   0.00654 

Reactive power consumption 
GRU 0.00292  0.00842  

LSTM 0.00325  0.00898  

Table 7.  Analysis of previous research 

Ref. Optimization Performance Matrix GRU Implication 

[27] Random forest 
RMSE and MAE GRU 

better then LSM 

Good generalization ability in emotion recognition 

from sound signals 

[28] 
Ensemble GRU 

LSTM 
RMSE and MAE 

GRU   enhancing operational efficiency in 

industries oil and gas 

[22] Tree dataset RMSE and MAE 
Better generalization then ARIMA, MLP, RNN, 

LSTM 

[29] 
GridSearch 

optimization 
Hyperparameter tuning GRU contributes to capture long-term dependencies 

[30] Ensemble 
F1 Score, computation 

metric 

GRU generalization by efficiently learning from 

short-term dependencies 

[18] Random forest RMSE and MAE 
GRU generalization reliable for batch production 

historical data is limited 

[31] 
Hybrid GRU & 

Bidirect 

CRF (Condition 

Random Field) 

The signification incorporated of GRU   in 

optimizing, efficiency, accuracy, and generalization 

for feature extraction and analysis NLP 

[17] 
Arrange 

hyperparameter 

architectural internal 

combination 

GRU enhanced performance in recognizing actions 

in video stream 

[16] MPC Algorithm 

The performance 

compare with other 

research 

The corporate GRU networks enhance control 

quality and reduce computational compare to 

LSTM 

[32] 
Hyperpara 

meter tuning 

MAE, RMSE, MAPE 

and R2 

The GRU reduce the speed of training, the ability to 

handle long-term dependencies 

Present 

study 
GridSearch MAE, RMSE 

GRU prediction results contribute to environmental 

mitigation and reduction of the greenhouse effect 

3.5. Implication Finding 

The uniqueness of this research compared to previous research is in dataset aspects. Busari et 

al. [27] highlighted the generalization ability of GRU in emotion recognition from speech signals. 

Kamal et al. [28], predict The Baltic Dry Index (BDI) data used as an indicator of global shipping 

and trade activity data with ensemble GRU. Fileli et al. [29] use the model GRU and Grid search to 

predict weekly sales data for the last five years of electrical products. GRU is used to capture long-

term dependencies, explore the GRU across various data and attempt to address the challenges 

associated with focusing on a dataset with limited implications. The uniqueness of this study focuses 

on energy consumption data sets during peak load times, off-peak load time data sets, and reactive 

power consumption which have never been discussed in detail by previous researchers. This research 

and other previous researchers explored the GRU model with various methods to generalize the 

model for different data domains as evidenced by performance metrics. Performance metrics that are 

often used in neural networks are the MAE and RMSE methods. Before using the predicted neural 

network the provision of electrical power in high-rise buildings was based on rough monthly 

estimates, the implication that there often be excesses and shortages of power in the building. This 



650 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 2, 2024, pp. 628-654 

 

 

Ahmad Rofii (Utilize the Prediction Results from the Neural Network Gate Recurrent Unit (GRU) Model to Optimize 

Reactive Power Usage in High-Rise Buildings) 

 

research finds that the GRU model initiation by Grid search on three datasets (lwbp, wbp, kvh) 

provides the implication the model has generalised predictions able on different data domains. This 

discovery has implications that produce estimates of future conditions such as trends and detailed 

electricity usage data Accurate GRU predictions make it easier to prepare and distribute electricity 

supplies optimally. The process of optimizing and planning electricity system operations, especially 

for the use of reactive power for increasing electricity system efficiency and reducing energy costs. 

GRU's role in predicting reactive power usage helps reduce the impact of low power factors and 

optimize reactive power compensation. 

4. Conclusion 

The research shows a better GRU in predicting reactive power consumption than LSTM, with 

lower MAE and RMSE values for all variables (Table 5). The GRU's predictive abilities have 

minimal errors and close alignment between predicted and actual data. Additionally, the GRU model, 

initialized with Grid Search, offers accurate predictions while simplifying implementation by 

avoiding repetitive training with different hyperparameters caused by the GridSearch process to 

optimize hyperparameters, thus improving prediction accuracy and faster data processing and does 

not require a high-spec computer. 

The results of this research show that GRU with Grid search initiation can generalize different 

data domains. The accurate predictions produced by the GRU model significantly influence the 

decision-making process for building electricity managers in preparing equipment that consumes 

reactive power, such as air conditioning systems and electric pump machines. This approach 

mitigates reactive power surges so that they do not exceed the available reactive power by the reactive 

power compensator (Capacitor Bank). Predicting the use of reactive power in high-rise buildings can 

help maintain the power factor below the threshold by scheduling large power-absorbing machines 

so that they do not work simultaneously.  This is important to avoid additional operational costs and 

contribute to mitigating the impact of greenhouse gases due to the low efficiency of the global 

electricity system. 

Planning with accurate predictions will provide direction for energy management in dealing 

with conditions of increasing load or conversely decreasing capacity due to the building's capabilities 

and capacity decreasing in function day by day. Prediction models are needed to prepare operational 

regulations for the use of electrical energy in high-rise buildings.  Use of energy has an impact on 

the global electricity efficiency system because high-rise buildings are the largest users of electrical 

energy from state electricity companies. So energy use efficiency in high-rise buildings can reduce 

fuel use in producing electricity, so high-rise buildings have efficiency implications for the energy 

use system at large and contribute to environmental sustainability through mitigating greenhouse 

gases, in this case in urban areas. 

Developing research in energy management is vital for addressing emerging challenges in urban 

energy systems. Based on efforts, the integration of renewable energy sources like solar and wind 

power is crucial for sustainability, along with implementing smart grid technologies to optimize 

energy distribution and improve the resilience of energy. 

The difficulty of data acquisition is an obstacle to developing recurrent neural network models. 

Data in certain domains, such as building-related data, may not be readily accessible, but there are 

solutions. Trusted platforms provide datasets that can serve as alternatives for research development 

in such scenarios. 
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