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1. Introduction  

An unmanned aerial vehicle (UAV), commonly known as a drone have become more essential 

and used for different applications. Such activities as monitoring, environmental management, and 

civil security control require efficient safety procedures [1]. The two primary types of UAVs are 

fixed-wing and rotorcraft. In 2020–2022, fixed-wing UAVs with vertical takeoff and landing 
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 Developments in drone technology have made them crucial in various 

fields. Vibrations caused by external conditions or mechanical failures in a 

drone's design can significantly affect the efficiency of the drone's 

communication systems. The drone's antenna generates phase noise, which 

can degrade the performance of drone communications systems. This work 

presents an analysis and computational model of how drone vibration 

affects system performance. by using two steps. The first one uses the 

simulation Monte-Carlo in MATLAB when the iteration algorithm 

processes with various variable values as the frequency carriers and the 

order of the quadrature-amplitude-modulation (M-QAM) system and 

evaluates the performance of the communication system by measuring the 

symbol error rate. The second step uses the one-dimensional convolutional 

neural network to predict the symbol error rate. After creating the dataset 

in the first stage, reprocess it and split it into 70% training and 30% testing. 

Then, by MATLAB App Designer created a graphical user interface (GUI) 

for friendly use. The result appears to be that the performance of the drone 

communication system decreased when frequency carriers and modulation 

order for M-QAM increased due to the impact of a vibrating antenna. Our 

contribution to this work is using 1DCNN, unlike other works that only use 

simulation to evaluate the performance, because 1DCNN can automatically 

extract useful features from the input dataset to evaluate the effect. This 

study provides a valuable method to evaluate the efficiency of a 

communication system on the UAV, which is particularly important for 

drone wireless system planning. In our next work, we propose investigating 

other factors affecting UAV communication systems, including humidity 

and temperature. 
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(VTOL) capabilities developed rapidly [2]-[4]. Using electric or hybrid propulsion, combine 

Aeroplan and multirotor UAV capabilities [5]-[7]. Most UAVs are often supported by an onboard 

autopilot based on tiny sensors such as accelerometers, gyroscopes, barometers, and GPS. Precise 

estimation of a UAV's attitude and position is the first step towards precise machine control [8]. 

Fig. 1. Depicts the generic receiver and transmitter for control and video signal in the drone's 

communication system. Various conditions, such as weather, obstacles, distance, metal interference, 

radio interference, and frequency interference, impact a drone's signal transmission. Rain and heat 

can impact signal propagation, drone electronics, and batteries [9]. A crucial element is signal 

strength. In addition, the drone may move erratically and lose signal strength due to mechanical 

problems or wind vibrations. The system's primary beam direction, side lobes, and beam breadth 

change due to equivalent antenna movements caused by drone vibrations. Ultimately, these 

modifications may weaken the communication channel [10]-[13]. 

 

Fig. 1.  General receiver and transmitter system for drone 

Many scholars have been examined the primary vibration sources influencing this UAV and 

offered a computational and experimental vibration analysis of a multirotor chassis. The outcome 

data was used to do a numerical modal analysis of the UAV chassis, making it possible to identify 

low-vibration areas ideal for mounting sensitive electronics [14]. Investigated how the quality factor 

of the laser communication link in the optical inter-satellite network (OISN) system is affected by 

pointing mistakes brought on by vibrations in the satellite platform. This study also provides optimal 

laser power and wavelength specifications [15]. Looked at the possibility of analyzing vibration 

measurements from various flights to determine the state of the drone's internal components. The 

findings could help safety operators determine whether vibration anomalies in drone flights signal a 

severe problem progressing and serve as a diagnostic or troubleshooting tool [16]. Studied the effects 

of a variable 3-dimensional (3D) antenna beamwidth on a cellular network supported by unmanned 

aerial vehicles (UAVs). 

Additionally, they examined the performance of typical user equipment (T-UE), paying 

particular attention to coverage probability and spectral efficiency (SE) when 3D antenna beamwidth 

fluctuations were present. The study highlights the significant disruption caused by antenna 

fluctuations [17]. And proposes a direct air-to-ground radio communication technique for rotary-

wing UAVs that account for propellers. The model is utilized to present the investigation and its 

discoveries. The results indicate potential risks linked to adapting to the existing communication 

system and that the maximum Doppler shifts occur for all simulated frequencies over the LTE-

required threshold of 300 Hz [18]. Studied the impact of UAV wobbling on the coherence time of 
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the wireless channel between UAVs and terrestrial user equipment (UE) using a Rician multipath 

channel model. The results of this study indicate that the channel's coherence time may degrade 

quickly, even for small wobbling UAVs. This could pose difficulties in tracking the channel and 

establishing a reliable communication link [19]. 

Many scholars have been conducted on the effects of antenna vibration, particularly on large 

reflector antennas [20]-[23]. Research has shown that the distortion of an antenna caused by vibration 

alters the radiation characteristics, including the radiation pattern, primary beam orientation, and 

beam breadth. Antenna vibration may increase measurement error, perhaps resulting in inaccurate 

estimates of the direction of arrival, as discussed in [24]. Furthermore, paired echo resulting from 

antenna vibration will significantly impact the picture quality of geosynchronous synthetic aperture 

radar [25]. The study also examined the impact of antenna vibration on phase noise. In reference 

[26]. Equations were derived to calculate phase noise based on vibration factors, and these equations 

were then validated using measurements. The transmitted signal's spectrum has substantial material 

beyond the fundamental frequency of vibration due to the chaotic oscillations of the antenna [27]. 

Focused their attention on investigating the effects of these vibrations on antennas and 

communications, as in [28]-[30]. Investigated the effects of antenna vibration in high-frequency (30 

GHz) wireless communication systems. They examined the influence on SER for different values of 

SNR in BPSK, QPSK, and MQAM scenarios [31]. 

 In this work, we study drone vibrations that produce phase noise and how phase noise affects 

the drone communication system, which can negatively impact the operation of wireless 

communication systems, using two methods. The first stage uses the simulation Monte Carlo in 

MatLab2021b when the iteration algorithm processes with various variable values as the frequency 

carriers (2.4 GHz, 5.8 GHz) and the order of the M-QAM system (4-QAM, 16-QAM, 32-QAM, or 

64-QAM) and evaluates the performance of the communication system on the drone by measuring 

the symbol error rate SER. The second stage uses the convolutional neural network CNN to predict 

the symbol error rate (SER). After training and testing our model on the dataset that is created in 

simulation, the MATLAB App Designer creates a GUI that is easy and friendly for the user. Our 

contribution to this work is using 1DCNN, unlike other works that only use simulation to evaluate 

the performance of the unmanned aerial vehicle UAV communication system. This study provides a 

valuable method to evaluate the efficiency of a communication system on the UAV. We notice how 

degrading the drone communication system's performance is when we increase the carrier frequency 

and use high-order M-QAM. This is conducted to assess the influence of vibration on different 

conditions and to quantify the symbol error rate (SER). 

This study is as follows: Section One provides an introductory literature survey and explains the 

methods used. Next, analyze the mathematical representation of antenna vibration within the 

framework of M-QAM in Section Two. Section three explains the theoretical background of the 

phase noise effect on communication systems and convolutional neural network (CNN) layers. Then, 

the methods used and explained the steps and algorithm to experiment with the vibration drone 

through the utilization of MATLAB 2021b in simulation Monte Carlo and convolution neural 

network CNN, specifically examining two frequencies, 2.4 GHz and 5.8 GHz, and different M-QAM, 

are outlined in Section Four. Section Five shows the results of the symbol error rate (SER). 

Indifferent vibration and carrier frequencies. Signal-to-noise ratio (SNR) values using the Monte 

Carlo technique, CNN.Section six shows the discussion  and The last section concludes with a 

thorough discussion and recommendations based on the results. 

2. Mathematical Model 

Vibrating antennas introduce Phase noise into transmissions, both in transmitting and receiving 

signals. When operating in high-vibration situations, microwave and millimetre-wave systems that 

demand low-phase noise at small frequency offsets must consider this noise source. The vibration may 
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be sinusoidal or random vibration. Let us assume that an oscillator produces a pure sine tone at 

frequency. Additionally, vibration does not affect this oscillator. An antenna, called antenna A, 

receives input from the oscillator. At a frequency, Antenna A is oscillating around the origin of the 

coordinate system. The vibrating antenna sends signals to a second antenna, known as antenna B, 

shown in Fig. 2. Antenna B is not vibrating; it is stationary. 

 

Fig. 2.  Vibration from antenna A causes phase noise on antenna B's signal 

Vibrating antennas derived by [20] introduce phase noise into transmissions. The position of 

Antenna A as a function of time.  

�⃗�(𝑡) = 𝑥𝑜⃗⃗⃗⃗⃗𝑠𝑖𝑛 (2𝜋𝑓𝑣𝑡) (1) 

Increases the phase radiation with time by antenna A, and the slope is constant and equivalent to 

angular frequency. At antenna B, the phase is offset because the distance between the antennas causes 

the propagation delay; therefore, the phase at antenna B is received in radians. 

𝜑𝐵(𝑡) = 𝜑𝐴(𝑜) + 2𝜋𝑓𝑜𝑡 (𝑡 −
𝐷(𝑡)

𝑐
) (2) 

At antenna A   𝜑𝐴(𝑜)   is the initial phase, D(t) is the distance between the two antennas, and 𝑐 

is the velocity of light in a vacuum. The phase of the signal received by antenna B. 

𝐷(𝑡) = 𝑅 − ( 𝑥𝑜⃗⃗⃗⃗⃗. �̂�  )𝑠𝑖𝑛 (2𝜋𝑓𝑣𝑡) (3) 

Substituting (3) into (2) and choosing the initial phase. 

𝜑𝐵(𝑡) = 2𝜋𝑓𝑜𝑡 (𝑡 +
𝑥𝑜⃗⃗⃗⃗⃗. �̂�

𝑐
𝑠𝑖𝑛 (2𝜋𝑓𝑣𝑡)) (4) 

Compute the second derivative of place (1) for time to get the peak acceleration. 

𝑎𝑝⃗⃗ ⃗⃗⃗ =  (2𝜋𝑓𝑣𝑡) 2  𝑥𝑜⃗⃗⃗⃗⃗ (5) 

There are 2 acceleration peaks of the same amplitude but in opposing directions. The max 

acceleration in the specified direction is provided for convenience of 𝑥𝑜⃗⃗⃗⃗⃗ was chosen for the definition 

of ܽ  ܽ 𝑎𝑝⃗⃗⃗⃗⃗ .Solve (5) for 𝑥𝑜⃗⃗⃗⃗⃗ and substitute the result back into (4). The phase noise received by antenna 

B. 

𝜑𝐵(𝑡) = 2𝜋𝑓𝑜𝑡 +
1

2𝜋

𝑎𝑝⃗⃗⃗⃗⃗. �̂�

𝑐

𝑓𝑜

𝑓𝑣
2

𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝜋𝑓𝑣𝑡)  (6) 

𝑓𝑜 is the sin wave frequency, 𝑓𝑣
  is the vibrating frequency, 𝑎𝑝⃗⃗ ⃗⃗⃗is the peak acceleration, �̂� the 

location of antenna B, 𝑐 the speed of light. Fig. 3 depicts the main source of drone vibration [32]. The 

vibration of the drone is always random [33]. Modelling and collecting random vibrations in 

unmanned aerial vehicles or UAV systems is challenging since it is difficult to identify the different 

sources [34]. Undesired vibrations commonly originate from the primary rotor, engine, and 
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rechargeable battery energy source [35]. Sensitive electronic components in UAV systems can 

generate random vibrations with high random features due to responses to pavement roughness, 

acoustic pressure, and air disturbance [36]. This vital category of issues can lead the system to move 

from a stable state to a state of failure [37]. 

 
Fig. 3.  Drone vibration sources 

Random vibrations are typically characterized by their (PSD). Call the vibrational PSD in the 

direction �̂� 𝐺(�̂�. 𝑓𝑣)  in unite of g²/Hz, where g is the acceleration of Earth’s gravity. For a narrow 

bandwidth ∆𝑓𝑣  of random vibration, the vibration is approximately sinusoidal and the peak 

acceleration can be related to the vibrational PSD [20]. 

𝑎𝑝 = 𝑔 √2∆𝑓𝑣𝐺(�̂�. 𝑓𝑣)  (7) 

The factor of (√2) scales from the RMS [38]. Write the phase received by antenna B as a function 

of the vibrational power spectral density (PSD) using the given equation and ∅𝑜 as the initial random 

phase of the vibration at t = 0. Where is the phase noise detected by antenna B due to random vibration 

[20]. 

 𝜑𝐵(𝑡) = 2𝜋𝑓𝑜𝑡 +
1

2𝜋

𝑔

𝑐

𝑓𝑜

𝑓𝑣
2 √2∆𝑓𝑣𝐺(�̂�. 𝑓𝑣) 𝑠𝑖𝑛 𝑠𝑖𝑛 (2𝜋𝑓𝑣𝑡 + ∅𝑜)  (8) 

Where 𝑔 Earth’s gravity, 𝐺(�̂�. 𝑓𝑣) the direction of acceleration of earth gravity=0.98 m/s2. Phase 

noise resulting from vibration affected the symbol error rate SER. Moreover, the probability density 

function PSD could be calculated for varying mapping orders(M-QAM) using Equations (8) and (9). 

[39]. The following is the PSD equation for the received signal under random vibration derived by 

[39]. 

𝑓𝑟𝑖𝑥𝑖
(𝑥, 𝑦) = 𝑁2 (𝑎𝑖𝑙√

𝐸𝑔

2
, 𝑎𝑖𝑄√

𝐸𝑔

2
 ,

𝑎𝑖𝑄
2 𝐸𝑔𝜃𝑟𝑚𝑠

2 + 𝑁𝑜

2
 ,

𝑎𝑖𝑙
2 𝐸𝑔𝜃𝑟𝑚𝑠

2 + 𝑁𝑜

2
)  (9) 

Where 𝑎𝑖𝑙 and 𝑎𝑖𝑄 are the two orthogonal components of the signal; 𝐸𝑔energy of the signal; 

𝜃 
  phase noise for varying mapping orders, SER could be calculated using equation (4) derived by 

[39]. Where 𝑀 is the order of mapping. 
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𝑃𝑒−𝑀𝑄𝐴𝑀 =
1

𝑀
[1 − ∑  

𝑀

𝑖=1

∫  
𝑑𝑖

𝑐𝑖

∫  
𝑏𝑖

𝑎𝑖

𝑓𝑟𝑖
𝑠𝑖

(𝑥, 𝑦)𝑑𝑥𝑑𝑦]  (10) 

3. Theoretical Background  

This section briefly discusses the phase noise effect communication system and the Convolution 

Neural Network (CNN) layers. 

3.1. Phase Noise Effect Communication System  

Drone vibration during flight produces phase noise. The Institute for Telecommunication 

Sciences defines phase noise (PN) as rapid, short-term, random variations in the phase of a wave in 

an oscillator resulting from time-domain instabilities. Phase Noise (PN) is a critical element in 

communication systems as it impacts the single receiver, affecting the symbol error rate (SER). Drone 

communication systems are moving towards higher QAM (quadrature amplitude modulation) 

schemes like 1024, 2048, or even 4096QAM to take advantage of increased capacity and throughput. 

In addition to trade-off considerations such as increased interference, reduced signal density, and 

signal coordination complexities, it is essential to factor in PN compared to AWGN as an additional 

trade-off element. This can further complicate the system's design, leading to additional costs. 

In Fig. 4 we take 16-QAM and 64-QAM to compare the affected phase noise, the constellation 

diagram, and arrange symbols. 

1. 16-QAM 

a. Each symbol represents 4 bits (2 bits for amplitude and 2 bits for phase). 

b. The constellation diagram contains a 4x4 grid (distinct point). 

c. The constellation diagram symbols (phase angle 45 degrees). 

d. The distance between the symbols is relatively large, making it less sensitive to phase noise 

compared to high-order QAM. 

2. 64-QAM 

a. Each symbol represents 6 bits (3 bits for amplitude and 3 bits for phase). 

b. The constellation diagram contains an 8x8 grid (distinct point). 

c. The constellation diagram symbols (phase angle 22.5 degrees). 

d. The distance between the symbols is very close and therefore highly sensitive to phase noise 

compared with lower-order QAM. 

So, high-order QAM provides a high data rate in the communication system when increasing the 

symbol's number and density in the constellation diagram. However, the high-density symbols lead to 

high sensitivity to noise and bit errors. Phase noise results in the rotation of points on a constellation 

diagram around the origin. High-order QAM, like 16-QAM, 64-QAM, or higher, requires placing 

symbols more densely in a complicated plane. Phase noise shifts constellation points from their ideal 

locations, leading to symbol errors. High-order QAM includes symbols that are close together, causing 

them to interfere with adjacent symbols and causing a higher bit error rate (BER). Phase noise can 

cause inter-symbol interference by allowing the phase noise of one symbol to impact adjacent 

symbols. Interference disrupts the signal and may interfere with the receiver's ability to accurately 

demodulate symbols, especially with high-order QAM with closely spaced symbols. 
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Fig. 4.  Constellation diagram for 16-QAM vs 64-QAM 

Phase noise often increases with higher offset frequencies from the carrier frequency. In simple 

terms, the phase noise power spectral density increases at higher frequencies further from the carrier. 

So, the high-frequency elements of the QAM signal that are far from the carrier frequency face more 

phase noise, causing increased distortion. In short. Phase noise impacts all frequency components of 

a signal. However, it significantly impacts high-frequency components in high-order QAM systems 

because of their wider bandwidth, more excellent symbol rates, and the spectrum features of phase 

noise.  

3.2. Convolution Neural Network (CNN) 

CNN operates based on the same principle as the natural visual system. CNN's distinctive 

architecture helps reduce overfitting in the neural network and decreases the computing cost of 

classification. The CNN design consists of layers: an output, an input, a fully connected (FCL), a 

pooling (PL), and a convolutional (CL)., as shown in Fig. 5 [40]. 

 

Fig. 5.  CNN with four layer 

The convolutional layer in a CNN extracts complex and abstract features from the input data. 

Using an activation function with varied weights and biases can increase the abstract features of the 

convolutional layer. The convolutional process of CNN is depicted in an equation (10). 

𝑥𝑙
𝑗

= 𝑓 ( ∑  𝑥𝑖
𝑗−1

∗ 𝑤𝑖𝑙
𝑗

𝑖∈𝑃𝑛

+ 𝑏𝑙
𝑗
) (11) 

Where 𝑙:  no. of layers; 𝑗 component; 𝑤: weight; 𝑏: basis. Adding a pooling layer into the CNN 

enhances the quality of features obtained from the convolutional layer, as discriminant features have 

an essential role in accurate classification by a classifier. 
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𝑥𝑙
𝑗

= 𝑓(𝑤𝑙
𝑗

∗ max(𝑥𝑖
𝑗−1

) + 𝑏𝑙
𝑗
) (12) 

Where 𝑥𝑙
𝑗
: the max pooling operation. CNN utilizes numerous of layers of convolution and 

pooling to enhance its ability to extract local information from the input data. The CNN classifies 

data into appropriate categories after extracting hidden data using the pooling and convolutional 

layers. CNN utilizes a fully connected layer for this purpose. Equation (12) represents a fully 

connected layer that classifies the latent characteristics obtained using the convolution kernel [41]. 

 𝑓𝑥𝑗+1 = (∑ 𝑤𝑖𝑙
𝑗
𝑎𝑗(𝑖) + 𝑏𝑙

𝑗

𝑛

𝑖=1

 ) (13) 

The conventional deep CNNs presented in the previous section are designed to operate 

exclusively on 2D data, such as images and videos. This is why they are often referred to as ‘‘2D 

CNNs.” As an alternative, a modified version of 2D CNNs called 1D Convolutional Neural Networks 

(1D CNNs) has recently been developed [42]-[51]. These studies have shown that for certain 

applications, 1D CNNs are advantageous and thus preferable to their 2D counterparts in dealing with 

1D signals due to the following reasons: There is a notable contrast in computational complexity 

between 1D and 2D convolutions. Specifically, convolving an image with N*N dimensions using a 

K*K kernel results in a computational complexity of approximately O~(N2K2) for 2D convolution 

and approximately O~(NK) for 1D convolution with the same dimensions. Under identical 

conditions, the computational complexity of a 1D CNN is notably lower than that of a 2D CNN. And 

recent studies show that 1D CNN applications typically use compact configurations with 1-2 hidden 

CNN layers and networks with less than 10,000 parameters. In contrast, 2D CNN applications 

commonly use deep architectures with over 1 million parameters, often exceeding 10 million. 

Shallow networks are easier to train and implement compared to deep networks. And training deep 

2D CNNs typically necessitates specialized hardware configurations, such as cloud computing or 

GPU farms. CPU implementation on a regular computer is possible and quite quick for training small 

1D CNNs with few hidden layers (e.g., 2 or less) and neurons (e.g., less than 50). 

In this study, we utilized a one-dimensional convolutional neural network (CNN) to detect 

vibration effects. CNN is utilized as a component for extracting characteristics. We implemented 

1DCNN using the dataset provided by the simulation. The following approach was used: (a) A new 

dataset was created by dividing the original dataset into a training set and a validation set; (b) The 

dataset was trained using 1DCNN in MATLAB for regression; (c) Following training, performance 

metrics such as Mean Squared Error, Root Mean Absolute Error, Mean Absolute Error, and Relative 

Error were calculated; (e) Subsequently, the code was converted into a user-friendly platform using 

App MATLAB Designer, improving accessibility and usability. 

4. Methodology 

To predict the symbol error rate (SER) causing the effect of phase noise from the vibration on 

the drone's communication system, we will use the following two methods: 

4.1. Theoretical Model of Monte Carlo Simulation  

Monte Carlo simulations are essential to evaluating the impact of vibration on drone 

communication systems due to their ability to model complex systems with different parameters 

while running multiple simulation trials with random variations, providing information regarding 

system performance. Monte Carlo simulations provide accurate estimations of system performance 

based on average findings from multiple simulation attempts, which is crucial for evaluating the 

effects of phase noise [52].  
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The impact of drone vibration on communication systems, specifically the 5.8 GHz and 2.4 GHz 

frequencies that drones use to send data and video, almost all drones use them and their free licenses. 

The vibration frequency ranged from 10 to 100 Hz [53], and the other variables' values are in Table 

1.  

Table 1.  The parameters used in the simulation 

Parameters 
Variables 

Value Description 
Modulation order(M) 4Qam,16Qam,32Qam Number of symbols in QAM modulation 

Signal to Noise Ratio (SNR) -2 to 10 ratio of signal power to noise power 

Vibration Amplitude (A) 0. 1 to 2 amplitude of the antenna vibration 

Carrier Frequency (f_c) 2.4GHz, 5.8 GHz frequency of the carrier signal 

Vibration Frequency (f_m) 10 Hz, 100Hz frequency of the antenna vibration 

Number of Iteration 100-500 number of iterations for the Monte Carlo simulation 

Noise Standard Deviation (sigma) 0.1 standard deviation of the additive white Gaussian noise 

 

The Monte Carlo approach is used in this section to determine the performance simulation, 

validate the estimated results, and gain a deeper understanding of the vibration's influence. It gives a 

clearer picture than a deterministic forecast [54]. The simulation was conducted using MATLAB 

2021b, and the program flow chart is displayed in Fig. 6. 

 

Fig. 6.  Flow chart of simulation 

Fig. 6 shows the steps of the algorithm to estimate the effect on the communication system on 

the drone. By following the steps: 

1. Set the variable value in the theoretical simulation in MATLAB as shown in Fig. 7. 

2. At the transmitter side, we randomly generate QAM symbols (x) to generate the signal and 

modulate these symbols. 
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3. Adding AWGN to the affected signal. Now that the signal has affected the noise affected.by 

vibration  

4. At the receiver side, after receiving the signal, we will remove the vibration effect and 

demodulate. 

5. Then count and compare the error symbols with the original symbols. To compute the SER. 

The expressions of the SER of the M-QAM system due to the vibrating antenna are shown 

based on the proposed model. 

6. Repeat this procedure deepened on the iteration number set first. With a high number of 

iterations, SER will get high-accuracy results to SER. 

 
Fig. 7.  Parameters of MATLAB simulation 

Note: Change the parameters in the simulation to different values and take all cases as shown in Table. 1. 

4.2. One-Dimension Convolution Neural Networks (1DCNN)  

The traditional method uses the simulation theoretical model to estimate the effect of phase 

noise produced by drone vibrations. However, we will use deep learning (DL) to train and test our 

model on the data set we collected. After that, we can use it with a comprehensive data range. Deep 

learning is a branch of AI used in different fields [55], [56]. One of the most critical factors in CNN 

is the decreased number of parameters in artificial neural networks (ANN) [57]-[58]. CNN is a widely 

used DL architecture that can be trained directly from input data without requiring manual feature 

extraction [59]-[61]. 

4.2.1. CNN Architecture 

Designed the modal CNN to be suitable for learning the relationship between parameter input 

and their SER cross-ponding. 

1. Input layer: define the data input size in this layer. We have five columns and one row labeled. 

2. Convolution layer: We use two layers with 16 filters of size 3x3 for the kernel to extract 

significant features. The kernel of the convolutional layer consists of values (weights) that are 

convolved with the input data to generate feature maps. Empirical research has demonstrated 

that networks utilizing 3x3 filters typically perform various tasks. The common use of 3x3 filters 

in successful structures confirms their efficacy. Choosing a 3x3 filter size in convolutional layers 

provides a balance between obtaining local features, parameter efficiency, and getting optimal 

performance in various tasks. Padding the output dimensions to match the input dimensions. 

3. Relu layer: applies the activation function to the output of the convolution layer to make it non-

linear. 

4. Fully connected layer:  We use two layers contains weights, biases, and neurons to establish 

connections between neurons in different layers. The layers are typically positioned before the 

output layer and constitute the last layers of a CNN architecture. • This layer has a single neuron 

that generates a value indicating the predicted SER. 
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5. Regression layer: calculates the error between the predicted and actual outputs. Primarily used 

for regression assignments, such as predicting continuous values like the symbol error rate 

(SER). 

After the CNN architecture has been planned. To process the dataset, Follow steps flow chart 

of 1DCNN in Fig. 8. 

 

Fig. 8.  Flow chart of CNN 

4.2.2. Dataset Collection 

Firstly, we generated the dataset from the previous simulation, as shown in Table 2. Containing 

five columns (M-QAM, carrier frequency, amplitude vibration, frequency vibration, and SNR), all 

these parameters have various levels. Label each set with the corresponding SER, which represents 

the one set for which we generate 8000 rows. During the data collection phase, we faced the challenge 

of insufficient data provided by simulation. We need to create more data sets to address this limitation 

and improve accuracy.  

Table 2.  The sample of dataset using in CNN 

Dataset parameters 

M-QAM Amplitude-Vibration Frequency-Carrier SNR Frequency -vibration 
4 0.1 2.4 -2 100 

16 0.9 2.4 0 82 

32 1 5.8 8 10 

64 2 5.8 4 24 

 

4.2.3. Regression  

After loading the dataset as in Fig. 8. Into the input layer to reprocess the dataset, the next step 

is to split the data into 70% training and 30% testing to evaluate the modal performance and measure 

the accuracy. So to predict the SER value, utilize regression techniques, particularly 1DCNN 

(Convolutional Neural Network) regression. This advanced technology enables us to project 

continuous numerical values. We utilized CNN regression and computed multiple measures to 

evaluate the accuracy of our predictions. The metrics consist of Mean Square Error (MSE), Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE), Root Mean Absolute Error (RMAE), and 

Relative Error (RAE), as shown in the equations: 
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1. Mean square error (MSE). 

 𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖

^)
2

𝑛

𝑖=1

 (14) 

2. Root mean square error (RMSE). 

 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 (15) 

3. Mean Absolute Error (MAE). 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖

^|

𝑛

𝑖=1

 (16) 

4. Root Mean Absolute Error (RMAE). 

𝑅𝑀𝐴𝐸 = √𝑀𝐴𝐸 (17) 

5. Relative Error (RAE). 

𝑅𝐴𝐸 =
1

𝑛
∑ |

𝑦𝑖 − 𝑦𝑖
^

𝑦𝑖

|

𝑛

𝑖=1

× 100% (18) 

Where 𝑛 : no. of samples; 𝑦𝑖: actual value; 𝑦𝑖
^ predicated value. By calculating these metrics, 

we can comprehensively evaluate the performance of our CNN regression model in predicting the 

vibration effect to symbol error rate SER. This allows us to evaluate accuracy and improve the 

regression rraining process. 

4.2.4. MATLAB App Designer  

The regression training was completed, and the system evaluation parameters were calculated. 

The code was transformed into a platform that is easy to use via MATLAB App Designer, which is 

an intelligent method to enhance accessibility and usability. App Designer enables the development 

of interactive MATLAB apps through an easy-to-use graphical user interface (GUI). The design was 

finalized, as depicted in Fig. 9. 

 

Fig. 9.  Predicts the effect of vibration on symbol error rate (GUI) 
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The first field has a drop-down list representing the M-QAM order (4-QAM, 16-QAM, 32-

QAM,64-QAM), while the second field has a drop-down list representing the type frequency carrier 

(2.4 GHz, 5.8 GHz). Moreover, the third field represents the amplitude vibration, the fourth field 

represents the frequency vibration, and the last field represents the signal-to-noise ratio SNR. When 

the check button is pressed, the SER value appears in the SER field, as shown in Fig. 9. 

In short, we generated the dataset from the previous simulation, which contained five columns 

(M-QAM, frequency vibration, frequency amplitude, frequency carrier, and SNR), all parameters 

with various levels. Label each set with the corresponding SER and process the data by normalizing 

the input data and encoding the labels to be compatible with the data format to train the CNN. 

Designed the modal CNN to be suitable for learning the relationship between parameter input and 

their SER cross-ponding. After that, the dataset goes to the input layer, the last split of the data goes 

to 70% training and 30% testing to evaluate the modal performance and measure the accuracy of 

extracting the feature from the input in the convolution layer, reducing the dimension in the pooling 

layer, combining the feature data, and predicting the effect in the fully connected layer; the output is 

the SER predicted in the output layer; and the last step is created (GUI) by MATLAB App Designer. 

5. The Results  

5.1. Theoretical Model of Monte Carlo Simulation  

In the same way, as described above in Mote Carlo's method chapter, the simulation is carried 

out with MatLab 2021b by employing the algorithm as a Monte Carlo iteration simulation with 

several variable values. This is done to observe the impact of vibration on the various statuses and to 

measure the symbol error rate (SER).Initially, we used a carrier frequency of 2.4 GHz and a vibration 

frequency of 10 Hz and 100 Hz to draw SERs with various SNRs and orders (4QAM, 16QAM, and 

32QAM). The second experiment used a carrier frequency of 5.8 GHz, vibration frequencies of 10 

and 100 Hz, and orders 4QAM, 16QAM, and 32QAM. The number of iterations was equal to 100, 

as shown in Fig. 10. 

Fig. 10. SER vs. SNR for different order of QAM and carrier frequency 

As shown in Fig. 10, phase noise generated by drone vibrations leads to the symbol error rate 

SER increasing when the QAM order and frequency of the vibration increase because the symbols 

are closer to each other as 64-QAM is more sensitive than others. 

Fig. 10. shows the relationship between signal-to-noise ratio SNR and symbol error rate SER 

and represents them as curves. At high SNR levels, the SER decreases because the signal strength is 
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higher than the noise level. So, it is easy to distinguish between the different symbols. 

At a low SNR level, the SER increases because the signal strength is lower than the noise level. So 

it is difficult to recover between the different symbols. 

Fig. 11. shows the relationship between the SER and the number of iterations for both of the 

carrier frequencies, which are 2.4 GHz and 5.8 GHz. The carrier frequency and vibration frequency 

have a more significant influence on the signal that is received. It is clear from the information 

presented above that random antenna vibration affects the communications system of the drone. This 

is especially true when the carrier frequency and vibration frequency are increased and when a higher 

M-QAM order is chosen. 

 

Fig. 11. SER vs iteration for different MQAM 

So, we notice from the result that the high value symbol error rate SER (0.6738247) comes from 

a high carrier frequency of 5.8 GHz, a high vibration frequency of 100 Hz, and a high M-QAM order 

of 64-QAM. We notice how degrading the drone communication system's performance is when we 

increase the carrier frequency and use high-order M-QAM. This is conducted to assess the influence 

of vibration on different conditions and to quantify the symbol error rate (SER). 

5.2. One-Dimension Convolution Neural Networks (1DCNN)  

After making the architecture model, collecting and loading the dataset, and then making the 

training and regression stages, as shown in Fig. 12, the regression training process is performed in 

1DCNN. 

The result of training and testing appears to be good accuracy in Fig. 13. Which appear the 

validation rout mean square error (RMSE) is 2.89772, and by calculating some metrics, as shown in 

the method chapter, we can comprehensively evaluate the performance of the CNN regression model 

in predicting the vibration effect on the communication system by measuring the symbol error rate 

(SER). This allows us to evaluate performance and improve as needed. Enhance training results by 

ensuring dataset equality and diversity, and by increasing dataset size. 

In Fig. 13. show the visualized predictions. The x-axis represents the true values, and the y-axis 

represents the predicted values. We notice the regression line crossing above the diagonal line 

(representing the perfect prediction). In Fig. 14. show the visualized predicted value matches the true 

value, which means a high evaluation performance from our CNN model. 

After fine-tuning parameters such as epochs, batch size, and learning rate, etc., to achieve 

optimal performance, The system's overall performance was assessed, and the parameters for the 

evaluation were calculated as shown in Table 3. 
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Fig. 12. Regression Training process 

  

Fig. 13. Visualize prediction values vs. true values Fig. 14. Visualize sample values vs.  ser values 

Table 3.  Evolution parameters of regression                 

Parameters Value 
Mean square error (MSE) 8.392 

Root mean square error (RMSE) 2.897 

Mean Absolute Error (MAE) 2.301 

Root Mean Absolute Error (RMAE) 1.516 

Relative Error (RAE) 0.000116 % 

 

The CNN method results after processing input data through numerous layers, learning 

representations at each stage, and producing a prediction of the SER as the output. Training uses 

kernel parameters to extract essential characteristics from the input data. We notice that the symbol 

error rate (SER) also increases when the vibration and carrier frequencies, as well as the order QAM, 
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increase. Because of the phase noise produced by the vibration effect on bits in the constellation 

QAM. 

Table 4.  Sample of Results 

  Parameters input Result 

M-QAM Freq-Carrier Freq-Vibration Amp-Vibration SNR SER 
64 2.4 100 2 10 0.6738749 

32 2.4 100 2 10 0.4533443 

16 2.4 100 2 10 0.2220764 

4 2.4 100 2 10 0.1562560 

64 5.8 100 2 10 0.6738247 

32 5.8 100 2 10 0.4530797 

16 5.8 100 2 10 0.2220262 

4 5.8 100 2 10 0.1567030 

 

Table. 4 shows the results obtained using TL1DCNN. It indicates that increasing the number of 

frequency carriers, vibration frequency, and modulation order in M-QAM leads to a deterioration in 

the drone communication system's performance. The vibrating antenna is responsible for these 

effects. Our contribution lies in employing TL1DCNN, while other studies rely solely on simulation 

to assess drone communication system performance. This study offers a valuable method to evaluate 

the efficiency of a communication system on a drone. 1DCNN can automatically extract useful 

features from the input dataset to evaluate the effect, which is particularly important for wireless 

system drone planning. 

6. Discussion 

Most of the previous research focused on using simulations or experiments to show the effect 

of the vibration drone on communication systems, as mentioned in the introduction section. In this 

paper, we use the one-dimensional neural network (1D CNN) to examine the effect of vibration on 

the communication system of a drone by measuring the symbol error rate (SER). We then create the 

dataset by using the theoretical simulation as the algorithm mentioned in the method section, process 

the data set, upload it to our CNN model, and tune parameters (epoch, number iteration, bitch size, 

etc.) to get the best performance possible for the CNN model. The result appears to be a high vibration 

effect when using high-frequency carreri and high-order (M-QAM) with high vibration frequency.  

Using 1DCNN to analyze the effect of drone vibrations on communication systems has some 

limitations, such asFor training 1DCNN, the dataset contains vibrations and performance 

communication system data, which is difficult to collect with high equality and diversity. The real-

world environment presents a unique challenge for UAVs, like varying conditions and unpredictable 

vibrations. The model's training is hindered in adapting to this challenge. This study provides a 

valuable method to evaluate the efficiency of a communication system on the UAV, which is 

particularly important for drone wireless system planning. In the following work, we propose 

implementing a feedback loop between the CNN result and communication system to adjust the 

system parameters to improve performance, such as modulation order and power transmission, and 

investigating other factors affecting UAV communication systems, including humidity and 

temperature. 

7. Conclusion     

In this work, we study drone vibrations that produce phase noise and how phase noise affects 

the drone communication system, which can negatively impact the operation of wireless 

communication systems, using two methods. The first stage uses the simulation Monte Carlo in 

MatLab 2021b when the iteration algorithm processes with various variable values as the frequency 
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carriers (2.4 GHz, 5.8 GHz) and the order of the M-QAM system (4-QAM, 16-QAM, 32-QAM, or 

64-QAM) and evaluates the performance of the communication system on the drone by measuring 

the symbol error rate SER. The second stage uses the convolutional neural network CNN to predict 

the symbol error rate (SER). After training and testing our model in the dataset that is created in 

simulation, the MATLAB App Designer creates a GUI that is easy and friendly for the user. 

So, we notice from the result that the high value symbol error rate SER (0.6738247) comes from 

a high carrier frequency of 5.8 GHz, a high vibration frequency of 100 Hz, and a high M-QAM order 

of 64-QAM. We notice how degrading the drone communication system's performance is when we 

increase the carrier frequency and use high-order M-QAM. This is conducted to assess the influence 

of vibration on different conditions and to quantify the symbol error rate (SER). 

Theoretical reason that High-order QAM provides a high data rate in the communication system 

when increasing the symbol's number and density in the constellation diagram. However, the high-

density symbols lead to high sensitivity to noise and bit errors. Phase noise results in the rotation of 

points on a constellation diagram around the origin. High-order QAM, like 16-QAM, 64-QAM, or 

higher, requires placing symbols more densely in a complicated plane. Phase noise shifts 

constellation points from their ideal locations, leading to symbol errors. High-order QAM includes 

symbols that are close together, causing them to interfere with adjacent symbols and causing a higher 

bit error rate (BER). Phase noise can cause inter-symbol interference by allowing the phase noise of 

one symbol to impact adjacent symbols. Interference disrupts the signal and may interfere with the 

receiver's ability to accurately demodulate symbols, especially with high-order QAM with closely 

spaced symbols. 

Phase noise often increases with higher offset frequencies from the carrier frequency. In simple 

terms, the phase noise power spectral density increases at higher frequencies further from the carrier. 

So, the high-frequency elements of the QAM signal that are far from the carrier frequency face more 

phase noise, causing increased distortion. 

To reduce the impact of vibrations on the drone communication system, implement some 

methods, such as mechanical isolation between the frame and communication components on the 

drone, digital signal processing technology to filter noise from signals received, and other methods 

to optimize flight control algorithms (PID, proportional integer derivative). 

Using 1DCNN to analyze the effect of drone vibrations on communication systems has some 

limitations, such as. The dataset contains vibrations and performance communication system data for 

training 1DCNN, which is difficult to collect with high equality and diversity. The real-world 

environment presents a unique challenge for UAVs, like varying conditions and unpredictable 

vibrations.  make the model trained suffer in its ability to adapt to this challenge. 

Our contribution to this work is using 1DCNN, unlike other works that only use simulation to 

evaluate the performance of the UAV communication system. This study provides a valuable method 

to evaluate the efficiency of a communication system on the UAV, which is particularly important 

for drone wireless system planning. In the following work, we propose implementing a feedback 

loop between the CNN result and communication system to adjust the system parameters to improve 

performance, such as modulation order, power transmission, and investigating other factors affecting 

UAV communication systems, including humidity and temperature. 
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