
IJRCS 
International Journal of Robotics and Control Systems 

 
Vol. 4, No. 1, 2024, pp. 88-104 

ISSN 2775-2658 

http://pubs2.ascee.org/index.php/ijrcs 

 

 

       https://doi.org/10.31763/ijrcs.v4i1.1266 ijrcs@ascee.org   

  

Research on Indoor 3D Reconstruction Technology Based on 

Semantic Visual Simultaneous Localization and Mapping 

Yu Liang a, 1, Cao Lijia a,b,c,2,*, Fu Changyou a, 3  

a School of Computer Science & Engineering, Sichuan University of Science & Engineering, Yibin 644000, China  
b Artificial Intelligence Key Laboratory of Sichuan Province, Yibin 644000, China 
c Key Laboratory of Enterprise Informatization and IoT Measurement and Control Technology of Sichuan Province 

University, Zigong 643000, China  
1 861221301@qq.com; 2 caolj@suse.edu.cn; 3 fcybill@163.com 

* Corresponding Author 

 

1. Introduction 

In the modern field of computer vision, indoor 3D reconstruction technology has always been a 

research direction of great concern [1], [2]. With the rapid development of applications such as 

mobile robots, autonomous driving [3], VR/AR [4]-[6], the demand for accurate and efficient indoor 

3D reconstruction is also growing day by day [7]. 
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 In response to the challenge that traditional visual simultaneous 

localization and mapping (SLAM) systems, based on the assumption of a 

static environment, struggle to achieve real-time indoor 3D reconstruction 

in complex dynamic scenes, this paper proposes a real-time indoor 3D 

reconstruction algorithm based on semantic visual SLAM. By leveraging 

object detection to obtain 2D semantic information and providing prior 

information for geometric methods, the fusion of the two effectively 

suppresses dynamic features, reduces reliance on deep learning methods, 

and ensures the algorithm's real-time performance. Experimental results on 

dynamic scenes in the TUM RGB-D dataset show that our algorithm 

maintains nearly unchanged real-time performance while achieving an 

average performance improvement of approximately 97.56% and 97.31% 

on the TUM dataset and Bonn dataset, respectively, compared to the ORB-

SLAM2 system. Moreover, our algorithm can reconstruct more intuitive 

indoor global Octo-map and semantic metric maps compared to sparse 

point cloud maps, effectively enhancing the scene perception capability of 

mobile robots and laying the foundation for performing advanced tasks. 

Furthermore, our algorithm demonstrates a 3.5-10.5 times improvement in 

real-time performance compared to other mainstream semantic SLAM 

systems. Experimental results on the NVIDIA Jetson AGX Xavier confirm 

that our algorithm can run in real time on low-power platforms such as 

mobile robots or drones. However, the drawbacks of our algorithm include 

lower reconstruction accuracy in low-texture and large-scale scenes and 

ineffective suppression of dynamic features in low-dynamic scenes. Future 

work will consider replacing and improving deep learning methods and 

integrating IMU and other sensors to enhance system usability. 
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In indoor real-time 3D reconstruction, visual SLAM techniques are commonly used [8]. A 

complete visual SLAM system typically consists of four modules: visual odometry [9], backend 

optimization, loop closing [10], and mapping [11]. As a technology that integrates structured 

environmental information and camera localization [12], visual SLAM has attracted widespread 

attention in recent years. Traditional visual SLAM methods, represented by the ORB-SLAM series 

[13], [14], primarily focus on the geometric structure of the scene and camera pose estimation. These 

techniques have matured and perform well in certain scenarios. However, with the advancement of 

SLAM research, SLAM has entered the era of robust perception [15], posing higher requirements for 

the robustness of the system and the high-level nature of map reconstruction to address more complex 

application scenarios [16]. Traditional visual SLAM systems are mostly based on the assumption of 

a static scene [17], and they often fail to handle dynamic objects or handle them crudely using 

geometric methods, leading to erroneous data associations [18]. In real-world scenarios, which often 

include dynamic objects such as vehicles and pedestrians, the accuracy and robustness of these 

systems are generally poor [19]. Additionally, these systems typically only construct globally 

consistent metric maps of the scene, lacking semantic information about objects. Relying solely on 

geometric information often fails to provide sufficient semantic understanding [20]. Ideally, we want 

mobile robots to understand scene environments like humans do, enabling them to perform high-

level tasks. However, the scene geometric metric maps reconstructed by traditional visual SLAM 

systems typically contain only simple geometric information such as points, lines, and planes, lacking 

semantic information about the scene [21]. With the development of deep learning methods, 

researchers have begun integrating semantic segmentation or object detection methods into visual 

SLAM systems [22]. This has led to the emergence of semantic visual SLAM systems, which aim to 

integrate semantic information to achieve more accurate and semantically meaningful reconstruction 

results. 

Semantic visual SLAM integrates sensor data and visual information to model indoor scenes 

and understand environments. It identifies different categories of objects, scene semantics, and 

semantic relationships, and matches and integrates them with the map's topological structure [23]. 

This semantic understanding capability enhances indoor 3D reconstruction, making it more 

intelligent and practical. It has wide-ranging applications in various fields such as indoor navigation, 

smart homes, and VR/AR experiences [24]. 

However, semantic visual SLAM technology still faces many challenges in indoor 3D 

reconstruction [25]. One is the problem of semantic map reconstruction. How to fuse semantic 

information into 3D reconstruction and improve scene understanding and application effects is an 

important issue [26]. Second, the processing of dynamic objects. The existence of dynamic objects 

will lead to instability and uncertainty of the reconstruction results [27], [28]. Therefore, how to 

effectively deal with dynamic objects is an urgent problem to be solved, and there are some works 

on the solution of this problem [29], [30]. Finally, for real-time application scenarios, semantic visual 

SLAM systems are generally required to run in real-time in the scene [31], which puts high demands 

on their real-time performance [32]. Some current semantic visual SLAM systems themselves have 

higher accuracy and robustness, for example, systems using semantic segmentation methods like 

Mask R-CNN [33] or SegNet [34] face challenges in running in real-time on embedded platforms 

carried by mobile robots or drones [35]. For instance, Dyna-SLAM runs at a frame rate of only 2 

frames per second on the NVIDIA Jetson TX2 platform. Assuming an image size of 𝑀 ×𝑁, where 

M  is the image height and N  is the width, and considering 𝑁𝑑 dynamic objects to track, building a 

semantic map of size 𝐾 results in an overall computational complexity of 𝑂(𝑀 × 𝑁 × 𝐾) + 𝑂(𝑁𝑑 + 𝐿) +

𝑂(𝐾), where 𝐿 is the complexity of the dynamic object tracking algorithm. Thus, the algorithm would 

reach an astonishingly high level of complexity, rendering it almost non-real-time. Therefore, how 

to optimize the system algorithm and reduce the computational complexity to meet the real-time 

requirements is also an important research direction. 

This paper aims to conduct in-depth research and analysis on indoor 3D reconstruction 

technology based on semantic visual SLAM, and in view of the existing problems in current research, 
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this paper adds two parallel threads, target detection and semantic map reconstruction. The target 

detection thread utilizes an SSD [36] detection head, and by replacing the backbone network with 

MobileNetV3 [37], its detection speed is improved. The purpose of integrating the target detection 

thread is to obtain 2D semantic information through neural networks to provide prior information for 

the subsequent dynamic feature suppression method. Meanwhile, relying primarily on geometric 

information helps reduce the dependency on deep learning methods, thereby decreasing 

computational load and improving real-time performance. The semantic map reconstruction thread 

establishes intuitive global Octo-maps [38] and semantic metric maps with category and coordinate 

information, enabling mobile robots or drones to understand high-level environmental information 

for intelligent task execution. The main research contributions of this paper are as follows: 

(1) Two brand new parallel threads, target detection and semantic map reconstruction, are added 

to ORB-SLAM2 [9] to build an RGB-D semantic visual SLAM system for indoor real-time 3D 

reconstruction in dynamic scenes that is more accurate and robust than the ORB-SLAM2 system; 

(2) The method of suppressing dynamic features is improved. By combining semantic 

information and epipolar geometry constraints, geometric information obtained from epipolar 

geometry constraints is mainly relied on to suppress dynamic features under the premise of ensuring 

accuracy, rather than overly relying on deep learning methods, which better ensures the real-time 

performance of the system. 

The experimental results demonstrate that our algorithm, running on the NVIDIA Jetson AGX 

Xavier, achieves an average performance improvement of approximately 97.56% in dynamic scenes 

compared to ORB-SLAM2, with an increase in processing time of only 6 seconds per frame. 

Moreover, compared to mainstream semantic visual SLAM algorithms, our algorithm exhibits a 3.5-

10.5 times improvement in real-time performance. However, our algorithm still shows limitations in 

performance in scenarios with weak textures and large-scale scenes. The suppression of dynamic 

features is not sufficiently effective in low dynamic scenes. In future work, we plan to explore 

opportunities for improving deep learning methods or integrating other sensors such as IMU to 

address these limitations. 

2. Algorithm Framework 

The algorithm framework of this paper is based on ORB-SLAM2, using a depth camera as the 

visual sensor to achieve localization and mapping tasks. ORB-SLAM2 primarily consists of three 

threads: tracking, loop detection, and map construction. It has been widely validated using various 

datasets and is considered one of the most advanced and widely used visual SLAM systems to date. 

By utilizing ORB-SLAM2 as the framework for our system, we can effectively perform global 

localization and map construction tasks. Using an RGB-D camera allows for direct acquisition of 

depth information, aiding the algorithm in distinguishing between static and dynamic environmental 

elements. Additionally, it provides more accurate geometric structure and spatial distribution 

information of objects within the environment, thereby enhancing the reliability of localization and 

navigation [39]. 

The overall system flowchart after improvement is shown in Fig. 1. The algorithm adds target 

detection and improves the map reconstruction thread based on the idea of multi-thread operation, 

which can effectively improve the operation efficiency of the system. In the target detection thread, 

we use deep learning methods to obtain 2D semantic information of targets to provide prior 

information of dynamic objects for subsequent dynamic feature suppression methods, while avoiding 

excessive dependence of the system on deep learning methods, resulting in increased computation 

and decreased real-time performance. The semantic map reconstruction thread associates the 2D 

semantic information of key frames with the 3D point cloud of the map by establishing an intuitive 

semantic metric map to better help mobile robots or drones understand high-level environmental 

information to perform intelligent tasks [40]. Through the semantic map reconstruction thread, more 

intuitive semantic metric maps and global Octo-map can be obtained compared to the sparse point 

cloud maps generated by ORB-SLAM. 
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Fig. 1. Improved system framework  

3. Algorithm Process 

3.1. Target Detection Thread 

Previous semantic visual SLAM algorithms mostly used semantic segmentation methods, which 

generally lack good real-time performance. Therefore, this paper's algorithm replaces semantic 

segmentation with object detection. To maximize the speed of object detection, the paper chooses 

the single-stage object detector SSD. The core idea of SSD is to transform the object detection task 

into a regression problem, predicting both the object categories and positions simultaneously by 

applying a convolutional neural network at multiple locations and scales in the image. To improve 

its detection performance, the paper will use a feature pyramid network to fuse feature 

representations from different levels. The main idea is to integrate high-level features with low-level 

features in the backbone network, complementing spatial information lacking in high-level features 

with low-level features to enhance the accuracy of the model. 

At the same time, in order to provide more efficient and accurate target detection capabilities on 

embedded devices, this paper uses the lighter MobileNetV3 [11] feature extraction network instead 

of the traditional heavier VGG16 network to build the MobileNet-SSDLite network, as shown in Fig. 

3. It replaces all the standard convolutions in the SSD prediction layer with depth wise separable 

convolutions. Unlike traditional convolutions, it divides the calculation of "convolution + channel 

adjustment" into two steps, reducing the amount of computation to achieve lightweight. As shown in 

Fig. 2, convolution is first performed with convolution kernels of the same number of channels as 

the input image, the size of the convolution kernel is K×K, and then N groups of 1×1 convolutions 

with M channels are used to adjust the number of channels of the convolution feature map obtained 

earlier to make the number of output feature map channels N. The ratio of the amount of computation 

between depth wise separable convolution and traditional convolution is: 

 
𝐻𝑊𝐾2𝑀+𝐻𝑊𝑀𝑁

𝐻𝑊𝐾2𝑀𝑁
=
1

𝑁
+

1

𝐾2
 (1) 
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where 𝐻𝑊𝐾2𝑀 is the amount of computation for convolution with convolution kernels with the same 

number of channels as the feature map, 𝐻𝑊𝑀𝑁 is the amount of computation for channel adjustment, 

and 𝐻𝑊𝐾2𝑀𝑁 is the amount of computation for traditional convolution. 
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Fig. 2. Depth wise separable convolution 

In the MobileNet-SSDLite network, the convolution layers 11, 13, 14_2, 15_2, 16_2, and 17_2 

are responsible for the target detection work. These convolution layers have convolution kernels of 

different sizes and depths, which are used to slide over the feature map to generate candidate boxes 

and perform category classification and position regression on the candidate boxes. 

Tests were conducted on the VOC2007 test set [41], and the results are shown in Table 1. It can 

be seen that both the real-time performance and accuracy are excellent, making it suitable for use as 

the object detection algorithm in this paper. (Test setup: Intel i7-11700 + NVIDIA RTX3060ti). 

Table 1. Comparison of common object detection algorithms 

Modules mAP/% FPS MB 

SSD 73.16 17.4 107.0 

Tiny-YOLOV3 [42] 62.76 22.1 37.8 
Tinier-YOLO [43] 67.91 26.1 10.1 

MobileNetV2-SSD [44] 72.03 28.6 37.0 

MobileNetV3-SSDLite 75.65 28.3 35.5 

 

 

Fig. 3. MobileNet-SSDLite network architecture 

3.2. Epipolar Geometry Constraints and Dynamic Feature Suppression Methods 

The epipolar geometry constraint is one of the important principles of stereo image processing 

in the field of computer vision. As shown in Fig. 4, 𝐼1 and 𝐼2 represent the motion we need to find 

between the two cameras, with optical centers 𝑂1 and 𝑂2respectively. In there is a feature point 𝑃1 

in 𝐼1 , which corresponds to a feature point 𝑃2  in 𝐼2 .The two are matched ORB features from 

consecutive frames. If matched correctly, the two points are projections of the same point in different 

planes in 3D space. In space, →
𝑂1𝑝1

 and →
𝑂2𝑝2

 intersect at point 𝑃, 𝑂1, 𝑂2, and point 𝑃 determine a plane 

called the epipolar plane. The intersection 𝑒1,𝑒2 of 𝑂1,𝑂2and 𝐼1,𝐼2 is called the epipole, 𝑂1 𝑂2 is the 

baseline, and 𝑙1, 𝑙2on the intersection of the epipolar plane and 𝐼1 𝐼2 is called the epipolar line [12]. 

The epipolar geometry constraint obtains geometric information to determine whether the feature 

point is dynamic mainly by calculating the fundamental matrix 𝐹 or essential matrix 𝐸 from the pixel 
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positions of the matching points and then calculating the distance between the current frame and its 

corresponding epipolar line. The larger the value, the more likely it is to be a dynamic feature point. 

1I 2I

P

2p1p

1l
2l

1e

2e  

Fig. 4. Epipolar geometry constraints 

Taking the fundamental matrix 𝐹as an example, it can be expressed as: 

𝑃1 = [𝑥1, 𝑦1, 1], 𝑃2 = [𝑥2, 𝑦2, 1] 

Where 𝑥 and 𝑦 are the coordinates of feature points in the pixel coordinate system, 𝑃1 𝑃2are 

matching feature points of the same spatial point 𝑃 in the previous and current frames. According to 

the fundamental matrix 𝐹, the epipolar line 𝑙2 in the current frame can be calculated as follows: 

 𝑙2 = [
𝑋
𝑌
𝑍
] = 𝐹𝑃1 = 𝐹 [

𝑥1
𝑦1
1

] (2) 

𝑋, 𝑌, 𝑍 are line vectors. The epipolar geometry constraint can be expressed as: 

 𝑃2
𝑇𝐹𝑃1 = 𝑃2

𝑇𝑙2 = 0 (3) 

The distance 𝑃𝑖 of the feature point 𝑑𝑖 to the epipolar line can then be expressed as: 

 𝑑𝑖 =
|𝑃𝑖

𝑇𝐹𝑃1|

√𝑋2 + 𝑌2
 (4) 

In general, due to the influence of various types of noise, the feature point 2P  in the current 

frame cannot exactly fall on the epipolar line 𝑙2. Assuming that when the camera moves, the spatial 

point 𝑃 also moves accordingly to 𝑃′, which matches 𝑃2
′ in the current frame. If the distance 𝑑2

′  to 

the epipolar line is less than a threshold 𝜎, then we can usually consider point 𝑃 to be a static spatial 

point, otherwise it is dynamic and can be removed accordingly [45]. The method based on epipolar 

geometry constraints is relatively simple and stable. It can achieve point-to-line mapping, reducing 

the number of points to be matched, thereby improving efficiency and robustness. A comparison 

with methods based on motion detection [46], segmentation [47], [48], and optimization [49] is 

shown in Table 2. 

Table 2. Comparison of typical dynamic feature suppression methods 

Methods Database Average error Average runtime 

Motion detection KITTI 0.32 0.25s 

Segmentation KITTI 0.28 0.35s 

Optimization KITTI 0.26 0.45s 

Epipolar geometry KITTI 0.24 0.15s 

 

Of course, as an empirical value, the threshold 𝜎 often has problems that are difficult to define 

in applications. If the value is set too large, dynamic points may be ignored, and if set too small, 

static points may be incorrectly identified as dynamic points. The pure epipolar geometry method 

cannot understand the semantic information of the scene and can only process feature points 

according to the set 𝜎. This obviously cannot complete the task very well. It is a good solution to 

first distinguish between dynamic and static targets based on the prior 2D information obtained from 

the target detection thread and then combine semantic information with epipolar geometry 
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constraints to suppress dynamic features, which is also the method adopted in this paper. The idea of 

selecting 𝜎 in this paper is very simple. The value is directly chosen to be a threshold that can 

significantly suppress dynamic feature points in practical engineering. In static scenes, 𝜎 = 0, and in 

dynamic environments, it is set to 50. Additionally, dynamic weight values 𝜛 are set, with higher 

probabilities of movement assigned higher values (e.g., 5 for humans) and objects less likely to move 

assigned lower values (e.g., 2 for chairs). 

Firstly, the target detection thread observes whether dynamic objects are detected in the current 

frame. If they do not exist or if the current feature point is not within the bounding box of a detected 

dynamic object, the offset distance of the current feature point is calculated and compared directly 

with the standard empirical threshold 𝜎 to determine whether to remove it. If dynamic objects are 

detected and the current feature point is within their bounding box, the offset distance of the current 

feature point is calculated and compared with the product of the dynamic weight value 𝜛 and the 

standard empirical threshold 𝜎. Based on the result, suppression is decided. 

The prior semantic information obtained by the target detection thread endows the method based 

on geometric information with the ability to understand the environment at a higher level. Adopting 

different dynamic weight values for regions with different probabilities of movement overcomes the 

difficulty of selecting the empirical threshold. Since it does not overly rely on semantic information, 

this suppression algorithm addresses the weakness of poor real-time performance caused by relying 

solely on deep learning methods. 

3.3. Semantic Map Reconstruction Thread 

In general, three-dimensional point cloud maps constructed from point cloud data contain a large 

amount of unnecessary information in the environment, occupying significant memory space, with 

poor readability, and sparse point cloud maps cannot be directly used for robot motion planning and 

other tasks. The approach in this paper is that immediately after a new keyframe arrives, the Mapping 

thread utilizes its depth image and pose to generate a three-dimensional ordered point cloud and 

publishes it to ROS [50], constructing an Octo-map. The Octo-map, superior in spatial representation, 

memory efficiency, and query efficiency compared to point clouds, can provide obstacle and surface 

information directly applicable to navigation. As shown in Fig. 5, the comparison between the Octo-

map and sparse point cloud clearly indicates that the Octo-map provides more information. 

Addressing the lack of semantic information in the Octo-map, this paper utilizes the 2D bounding 

boxes obtained during the suppression of dynamic features to acquire 3D point cloud information 

within the bounding box regions, aiming to obtain 3D semantic object information. By calculating 

the average depth of the point cloud within the bounding box and comparing it with the depth of the 

point cloud, if the difference is small, it is considered as a cluster of point clouds belonging to the 

target object, which is then retained. The size and spatial coordinates are calculated to obtain 3D 

object semantic information, continuously updating the 3D semantic object information database, 

and using it to establish a semantic metric map. The semantic metric map contains semantic 

information such as object categories and coordinates, which can assist mobile robots in performing 

intelligent navigation, target grasping, and other semantic operations. The process of obtaining 3D 

semantic object information is shown in Fig. 6. 

 
(a) 

 
(b) 

Fig. 5. Comparison between Coefficient (a). Sparse Point Cloud Map and (b). Octo-map 
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Fig. 6. Process of obtaining 3D semantic object information 

4. Experimental Results Analysis 

In this section, we will conduct experiments to validate the improvements described earlier and 

verify the effectiveness of the enhanced algorithm. The overall experiment is primarily conducted on 

the NVIDIA Jetson AGX Xavier edge computing device, which boasts powerful computing 

capabilities and low power consumption characteristics. With 32 TOPs of computing power and 

power consumption ranging from 10 to 30W, it is more suitable as a computing platform for mobile 

robots or drones compared to other workstation platforms. Using an RGB-D camera as its sensor, it 

can directly measure depth information, eliminating scale drift issues. The algorithm proposed in this 

paper is designed for indoor environments, so there is little need to consider drawbacks such as depth 

cameras being susceptible to light interference.  

The steps of the experiment are: first, the performance of the improved SLAM system is 

evaluated on public datasets. Then the effectiveness of the dynamic feature suppression method is 

verified. Finally, the real-time performance of the improved system is evaluated, and real-time 3D 

reconstruction of indoor scenes on the TUM dataset is performed. 

4.1. Algorithm Performance Evaluation 

This paper uses the publicly available TUM RGB-D dataset [51], which is a widely used indoor 

robot vision dataset provided by the Technical University of Munich, Germany and is widely used 

for evaluating the performance of visual SLAM systems. In the experiment, we selected three high-

dynamic sequences fr3_walking_xyz, fr3_walking_halfsphere, fr3_walking_static (abbreviated as 

fwx, fwh, fws respectively) and the low-dynamic sequence fr3_ sitting_static (abbreviated as fss). 

There are two main indicators for evaluating errors in the SLAM field: absolute trajectory error 

(ATE) and relative pose error (RPE). This paper will compare them with ORB-SLAM2 as evaluation 

metrics, and the trajectory evaluation tool provided in TUM rgbd_bench_tools is used as the 

evaluation tool, with the camera sensor set to RGB-D camera, and the average of more than 30 

experiments is taken. The comparison results of the experimental sequences are shown in Table 3, 

Table 4, and Table 5 (the results retain 4 decimal places and the improvement results retain 2 decimal 

places). 

From the following chart results, it can be clearly observed that the running effect of the 

improved system in this paper in the high-dynamic fr3_walking sequences is much better than that 

of ORB-SLAM2, and in the low-dynamic fr3_sitting sequence, since the target dynamics in the scene 
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of the dataset is low, and the poses of most objects are relatively fixed, the performance of ORB-

SLAM2 on it is already quite good, and the improvement of the improved system in this paper is also 

limited, with an improvement of only 32.94%. 

Table 3. Absolute trajectory error comparison 

Sequences 
ORB-SLAM2 Ours Improvement (%) 

RMSE STD RMSE STD RMSE STD 

fwx 0.7404 0.3759 0.0131 0.0063 98.23% 98.32% 

fw  0.8753 0.4077 0.0261 0.0162 97.02% 96.03% 
fw  0.4080 0.1747 0.0071 0.0029 98.26% 98.34% 

f   0.0085 0.0041 0.0057 0.0028 32.94% 31.71% 

Table 4. Relative pose error comparison (rotation) 

Sequences 
ORB-SLAM2 Ours Improvement (%) 

RMSE STD RMSE STD RMSE STD 

fwx 6.7516 4.1236 0.3268 0.2056 95.16% 95.06% 

fw  14.0656 8.3239 0.7867 0.3659 94.40% 95.60% 

fw  5.4789 3.7841 0.2687 0.1065 95.10% 97.19% 

f   0.3807 0.1460 0.2576 0.1052 32.34% 27.95% 

Table 5. Relative pose error comparison (translation) 

Sequences 
ORB-SLAM2 Ours Improvement (%) 

RMSE STD RMSE STD RMSE STD 

fwx 0.4519 0.2198 0.0184 0.0103 95.93% 95.31% 

fw  0.5867 0.3584 0.0286 0.0144 95.16% 95.98% 

fw  0.3382 0.2107 0.0094 0.0047 97.28% 97.77% 

f   0.0104 0.0055 0.0067 0.0034 35.58% 38.18% 

 

To describe the comparison more intuitively, the ATE and RPE comparison graphs are drawn 

using the trajectory evaluation tool of TUM, as shown in Fig. 7 and Fig. 8. Among them, in the ATE 

result graph, the black line is the true trajectory, the blue line is the estimated trajectory, and the red 

line is the error between the two. The shorter the red line, the smaller the error and the higher the 

accuracy of the system. RPE is used to calculate the difference in pose changes between the same 

two timestamps to estimate the system's drift. 

The Bonn RGB-D Dynamic Dataset, provided by the University of Bonn, consists of 24 

dynamic sequence datasets used for evaluating RGB-D SLAM [52]. To verify the algorithm's 

generalization performance, we conducted additional experiments on this dataset, selecting 5 

representative sequences. The comparative performance with ORB-SLAM2 is shown in Table 6. 

In order to further verify the effectiveness of the system, after comparison with ORB-SLAM2, 

this paper also compares with mainstream semantic visual SLAM algorithms such as those shown in 

Table 7. It can be seen from the results that although the accuracy of this paper's algorithm is slightly 

lower than that of DynaSLAM, the reason is that DynaSLAM uses MASK R-CNN for pixel-level 

semantic segmentation, which is not adopted in this paper. But this also makes the real-time 

performance of DynaSLAM extremely poor, almost impossible to apply to embedded platforms such 

as drones. The comparison with other algorithms can prove the advancement of the average accuracy 

of the improved algorithm in this paper. 

Table 6. Absolute trajectory error comparison (Bonn datasets) 

Sequences 
ORB-SLAM2 Ours Improvement (%) 

RMSE STD RMSE STD RMSE STD 

Crowd1 0.9624 0.6571 0.0212 0.0137 97.80 97.91 

Crowd2 1.4687 0.7576 0.0452 0.0347 96.92 95.42 

Person_tracking1 0.8675 0.4687 0.0367 0.0125 95.76 97.32 
Person_tracking2 1.0824 0.5878 0.0287 0.0143 97.35 97.56 

Synchronous2 1.5789 0.5782 0.0146 0.0113 99.07 98.05 
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Fig. 7. Absolute trajectory error comparison (a). fwx/ORB-SLAM2, (b). fwh/ORB-SLAM2, (c). fws/ORB-SLAM2, 

(d). fss/ORB-SLAM2, (e). fwx/Ours, (f). fwh/Ours, (g). fws/Ours, (h). fss/Ours 
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Fig. 8. Relative pose error comparison (a). fwx/ORB-SLAM2, (b). fwh/ORB-SLAM2, (c). fws/ORB-SLAM2, (d). 

fss/ORB-SLAM2, (e). fwx/Ours, (f). fwh/Ours, (g). fws/Ours, (h). fss/Ours 

Table 7. Comparison with mainstream semantic visual SLAM algorithms 

Sequences 
DynaSLAM DetectSLAM [53] DS-SLAM System [54] 

RDS-

SLAM 
Ours 

RMSE RMSE RMSE RMSE RMSE RMSE 

fwx 0.0148 0.0248 0.0253 0.0182 0.0427 0.0131 

fw  0.0201 0.0573 0.0324 0.0263 0.0607 0.0231 

fw  0.0061 0.0125 0.0079 0.0091 0.0106 0.0061 

 

4.2. Dynamic Feature Suppression Method Effect Experiments 

This paper combines semantic information obtained from target detection and epipolar geometry 

constraints to eliminate dynamic feature points and achieve dynamic feature suppression effects. In 

order to verify the effectiveness of the dynamic feature suppression method, comparative 

experiments will be carried out in this section. 

First, we set up a control group consisting of the ORB-SLAM2 system and an improved system 

using only epipolar geometry constraints, and an experimental group consisting of our system. The 

experimental results, as shown in Fig. 9, clearly demonstrate that the ORB-SLAM2 system has 

minimal effect on suppressing dynamic features, while the improved system using only epipolar 

geometry constraints mistakenly detects many feature points, as shown in Fig. 9 (c) where the feature 

points of the monitor are ignored by the system. Our system almost eliminates all dynamic feature 

points while retaining as many static feature points as possible, such as the monitor feature points 
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mistakenly removed by the epipolar geometry constraints. This experiment demonstrates the 

effectiveness of our method for suppressing dynamic features. 

 
(a) 

 
(b) 

 
(c) 

 
(d)  

Fig. 9. Comparison of dynamic feature suppression effects (a). RGB, (b). ROB-SLAM2, (c). Epipolar 

geometric constraints, (d). Ours 

4.3. System Real-Time Performance Evaluation 

The real-time performance of the SLAM system is crucial for many application scenarios, 

ensuring that the system can respond and adapt to changes in dynamic environments in a timely 

manner, thereby providing accurate, reliable and efficient localization, mapping and navigation 

capabilities. 

This section evaluates the system's real-time performance. The evaluation indicator is the 

average time required for the system to process each frame. Comparative experiments were also 

conducted with other mainstream systems. The results are shown in Table 8. The average time for 

DynaSLAM to process each frame is very large, almost unable to meet the requirements of real-time 

operation. The real-time performance of system [55], a semantic SLAM system based on target 

detection, on embedded platforms is also worrying. Compared with ORB-SLAM2, although the 

average time is slightly increased, it can still fully meet the real-time requirements, and the accuracy 

is much higher than ORB-SLAM2. 

Table 8. Average frame processing time comparison of systems 

System Average Frame Processing Time 

ORB-SLAM2 60.43 
Dyn SLAM 232.51 

Sy tem [55] 688.56 

O r  66.46 

4.4. Indoor Real-time 3D Reconstruction Experiments 

Semantic visual SLAM plays an important role and value in indoor 3D reconstruction. It not 

only helps to construct accurate and structured indoor maps, but also provides rich semantic 

information for subsequent applications to improve the intelligence, adaptability and user experience 

of the system. 

In order to verify the actual 3D reconstruction effect, this paper verifies the algorithm on the 

TUM dataset and performs real-time 3D reconstruction experiments on the high-dynamic sequence 

fr3_walking, the low-dynamic sequence fr3_sitting, and the large-scale static sequence 

fr3_long_office. Establish global Octo-maps and semantic metric maps, as shown in Fig. 10, Fig. 11, 

and Fig. 12. The coordinates displayed on the maps are converted based on the origin where the 

semantic visual SLAM system runs. 

Furthermore, experiments were conducted on the challenging lifelong SLAM dataset 

OpenLORIS dynamic dataset [56], as shown in Fig. 13. This dataset closely resembles real-world 
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complex dynamic scenes and presents significant challenges. By performing real-time 3D 

reconstruction experiments on three different environments from the TUM dataset and the 

OpenLORIS dataset, this study validates that our algorithm can establish maps with low overlap, 

good readability, and high-level semantic information in indoor 3D reconstruction tasks. These maps 

can assist mobile robots in localization, obstacle avoidance, and enable them to perform higher-level 

tasks in more complex environments. 

 
(a)  

 
(b) 

Chairs

Tv monitor

 
(c) 

Fig. 10. Real-time 3D reconstruction in high dynamic scene (a). fr3_walking sequence, (b). Global Octo-

map, (c). Semantic metric map 

 
(a) 

 
(b) 

Chairs

Tv monitors

 
(c) 

Fig. 11. Real-time 3D reconstruction in low dynamic scene (a). fr3_sitting sequence, (b). Global Octo-map, 

(c). Semantic metric map 
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Fig. 12. Real-time 3D reconstruction in static scene (a). fr3_sitting sequence, (b). Global Octo-map, (c). 

Semantic metric map 

 
(a) 

 
(b) 

Tv monitors

Chairs

Diningtables

 
 

Fig. 13. Real-time 3D reconstruction in OpenLORIS datasets (a). OpenLORIS cafe1-2 sequence, (b). Global 

Octo-map, (c). Semantic metric map 

5. Conclusion 

The paper proposes a real-time indoor 3D reconstruction system based on semantic visual 

SLAM, primarily addressing the challenge of 3D reconstruction in dynamic indoor environments. 
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Improvements over the ORB-SLAM2 system include the addition of two new parallel threads—

object detection and semantic map reconstruction. The core idea of dynamic feature suppression in 

this paper is the integration of semantic and geometric information, and experimental results 

demonstrate significant effectiveness in suppressing dynamic features. The system evaluation on 

high-dynamic sequences from the TUM dataset shows an average improvement of 97.56% over 

ORB-SLAM2, and on the Bonn dataset, an average improvement of 96.67%, while still maintaining 

good real-time performance. Compared to some mainstream semantic SLAM open-source systems, 

the real-time performance is improved by 3.5-10.5 times while maintaining accuracy. During 3D 

reconstruction of indoor scenes from the TUM dataset and the more challenging OpenLORIS dataset, 

the system can establish semantic metric maps and global Octo-maps suitable for mobile robots to 

perform high-level tasks. 

The algorithm also proves that appropriately integrating deep learning methods can make 

traditional visual SLAM systems perform better. Compared to semantic segmentation methods, 

object detection has stronger real-time capabilities, leading to positive effects in practical engineering 

applications. 

However, the system also has some limitations, such as insufficient reconstruction accuracy in 

low-texture and large-scale scenes, ineffective dynamic feature suppression methods in low-dynamic 

scenes, and limited ability to detect small objects, resulting in lower-quality semantic metric maps. 

Future considerations include improving deep learning methods by replacing them with YOLOV5s 

or other methods and conducting training to enhance small object detection capabilities, or 

integrating IMU and other sensors to improve pose estimation performance, to adapt to more 

complex and high-speed environments. 
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