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1. Introduction  

For prognostic fault identification of induction motors an efficient fault predicting technique 

must be used to detect faults in the early stage without affecting the system. Industries are widely 

dependent on induction motors for automation and failure in these motors leads to huge revenue loss 

for the industry [1]. The driveline in industry consists of induction motor gear boxes, couplings and 

brakes controlled by variable frequency drives. Faults occurring in any part of the system affect 

induction motor performance to a great extent. The transmission of cyclic forces in the drive system 

causes vibration in the system. 

The electrical faults include rotor and stator faults. There are two different rotor faults which 

are pronounced in induction motors [2]. They can be categorized as end-ring and broken bar fault 

[3]. 
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 Variable speed induction motors controlled by variable frequency drives 

are used for a variety of industrial applications. Monitoring and prognostic 

occurrence of faults in induction motors is vital for reducing the downtime 

and accidents. The proposed work focuses on failures in induction motors 

owing to bearing misalignment and insulation failure in the stator that 

results in abnormal vibration and temperature rise in the motor. This 

research intends to improve the dependability and safety of industrial 

operations by identifying faults in their early stages using advanced 

methods such as vibration analysis and thermal monitoring. This work 

focuses on fault prognosis in induction motor through vibration data, which 

is analyzed using Daubechies orthogonal db10 wavelet transformation. The 

neural network algorithm optimizes the analyzed results to enable real time 

fault detection. The temperature of the stator is measured to estimate the 

expected lifetime of the insulator. The real time vibration and temperature 

data is measured and transferred to prognostic model build in MATLAB 

using ATMEGA 32 controller and the results are validated for good, 

allowable and not permissible conditions of motor based on ISO 10816 

vibration levels for Class I motors. The improved accuracy and efficiency 

of real-time fault detection have the potential to reshape maintenance 

strategies and enhance the overall reliability of variable speed induction 

motors. 

 

Keywords 

Induction Motor; 

Discrete Wavelet Transform; 

Artificial Neural Network; 

MEMS Sensor; 

Fault Prediction 

 
 

This is an open-access article under the CC–BY-SA license. 

 

http://pubs2.ascee.org/index.php/ijrcs
https://doi.org/10.31763/ijrcs.v4i1.1252
mailto:ijrcs@ascee.org
mailto:css@psgitech.ac.in
mailto:ravikrishna@psgitech.ac.in
mailto:rajasekarkpr@gmail.com
mailto:venkatesangct@gmail.com
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


140 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 4, No. 1, 2024, pp. 139-150 

 

 

C. S. Subash Kumar (Prognostic Real Time Analysis of Induction Motor) 

 

Similarly, there are two distinct forms of stator faults. There are defects in the frame, the stator 

lamination, and the stator winding. If an inter-turn short circuit occurs high currents run through the 

shorted coil, causing a lot of damage [4], [5]. The mechanical fault incorporates rotor mass 

unbalance, air-gap eccentricity, bearing fault and so on. Mass unbalance in the rotor is because of 

unequal dissemination of mass around the focal point of revolution of the rotor for which focus of 

gravity of the rotor does not harmonize with the focal point of turn. The lopsided attractive draw 

because of radial power created produces unnecessary vibration in the rotor and also in the stator. 

Un-balance may likewise happen by non-symmetrical expansion or subtraction of mass because of 

wear and tear, producing deformity, misalignment and so on.  

Air gap eccentricity means the unequal distribution of air gap between the stationary and the 

rotating part [6]. The air-gap in any rotating machine also serves a cooling purpose. When the air gap 

is reduced, this cooling phenomenon will also be hampered. This might result in heating of windings.  

The bearing of rotor is an essential part to reduce the friction between the moving components [7], 

[8], [9]. In addition to these faults, there are some miscellaneous faults in an induction motor. They 

are primarily caused by outside factors such as ambient temperature and air humidity. Vibrations in 

machines are even caused owing to failure in installation or defects in foundation. The faults lead to 

rise in current magnitude and cause more losses in the machine by rise in temperature [10].  

To address these challenges and enhance motor health monitoring, condition monitoring 

becomes imperative through the analysis of vibration and temperature data. The vibration of the 

machine is measured using MEMS Accelerometer whereas the temperature of the stator can be 

measured using the temperature sensor. The sensor values are converted into signals for obtaining 

the features of the signal. The features of the signal describe the parameters used for condition 

monitoring. The features can be extracted by using transforms like FFT and Wavelet transform. For 

analysis of faults in an induction motor, the different technique like Motor Current Signature 

Analysis (MCSA), vibration analysis, torque-signal analysis, and temperature-based analysis, etc., 

are used. Among which MCSA and vibration analysis are considered due to its advantages [11], [12], 

[13]. 

The health of a motor and the type of fault that has occurred can be correctly diagnosed by 

analyzing the vibration signals of the motor. The analysis of the vibration signal can be done by FFT 

in which the result widely varies based on the load and transient characteristics of the motor. 

Vibration signals can be measured non-intrusive and can be measured from the surface of the body 

[14], [15], [16], [17]. Signal processing and conditioning circuits are necessary for identifying the 

fault condition and avoid errors in computation.  

The time-domain signals of either Fourier transforms or Short Time Fourier Transform (STFT) 

is converted to frequency domain and are used for signal processing, had drawbacks in frequency 

domain and to detect transient fault conditions occurring in a motor. Analysis of vibration data using 

wavelets is a powerful signal processing technique in time domain and frequency domains [18], [19], 

[20].  

Wavelets are used for analysis of signals of varying frequency with multi-resolution 

capability and can analyze transient characteristics for non-linear signals. The type of fault based on 

low frequency or high frequency can be correctly detected, and acts as a mathematical tool for 

prognostic failure analysis [21], [22].  The three main ways to transform wavelets are the continuous, 

discrete, and wavelet packet types. Continuous Wavelet Transform (CWT) analyses vibration data 

in two dimensions instead of one dimension as in FT. CWT gives redundant information when 

translational and scale parameters are modified. In DWT signals are separated into components of 

low frequency and high frequency [23], [24], [25]. WPT provides detailed analysis of signals in high 

frequency regions by generating sub-bands and each sub-band provides detailed frequency analysis. 

The second-generation wavelet transforms use lifting scheme to provide detailed coefficient by 

splitting into subsets of odd and even samples and prediction is done with odd and even sample data, 

approximation coefficients are computed using the updating operator and approximation part of 
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signal is further decomposed. Artificial neural networks are used to analyze the vibration signals in 

order to identify faults from the vibration signals. 

In this paper, we propose a novel approach that integrates MEMS Accelerometer, temperature 

sensors, and advanced signal processing techniques, including Wavelet Transform and Artificial 

Neural Networks, for efficient fault prognosis in induction motors. 

2. Method 

The small-scale industries use induction motor for most of its applications. They need an 

alternative method for vibration monitoring where costly vibration analyzer cannot be used. For 

analysis of overheating due to faults instead of using the expensive Infrared thermal camera, 

temperature sensors seem to be the best alternative. Thus, this paper serves the purpose which is 

considered to be cost-effective and used for prediction of fault at an early stage. 

The accelerometer is a device that measures acceleration. It is used to detect and monitor 

vibration in rotating machinery. There are different types of accelerometers. The mostly preferred 

accelerometers are the piezoelectric type (ADXL335) and accelerometer that uses MEMS (Micro 

Electro Mechanical System) technology [26]. The piezoelectric accelerometer uses the piezoelectric 

effect to measure dynamic variations in acceleration. It has an excellent frequency response despite 

its small dimensions. It has a negligible phase shift. Apart from all these advantages, it has high-

temperature sensitivity, and hence piezoelectric type is not preferred. Instead, an accelerometer that 

uses MEMS technology is preferred. In specific, capacitive accelerometers are preferred. 

The temperature sensor used is MLX90614. This is a non-contact type infrared sensor which is 

small in size and easy to integrate. The temperature is calibrated based on emissivity of the stator 

material. This sensor works on the logic that it marks infrared light reflecting from remote objects so 

that it can detect temperature by absorbing the discharged IR waves without touching them physically 

[27].  

The selection of MEMS-based accelerometers, specifically the capacitive type, is based on 

factors such as frequency response and cost.  Similarly, the MLX90614 temperature sensor was 

chosen due to its non-contact nature, small size, and wide temperature range. While the selected 

sensors offer numerous advantages, the potential limitations are with sensor placement and the 

impact of ambient temperatures may affect the accuracy of the collected data.  

2.1. Proposed Method 

To monitor the condition of the motor, temperature, and vibrations of the motor are measured. 

The setup is made in a 3 HP, 3-Phase, Class B, Slip ring Induction motor. The vibration sensor is 

placed on the surface of the motor bearing cap, and temperature sensor is mounted near the stator 

winding. The defects in bearing are artificially induced to create dataset for allowable and not 

permissible conditions for training and testing the proposed system.  

The overall idea of the paper is represented as a block diagram in Fig. 1. The sensor data is 

acquired through ATMEGA 32 and is transmitted through serial communication to the proposed 

model built in MATLAB. The vibration signal in time domain is converted to frequency domain 

using Daubechies orthogonal db10 wavelet transformation and the coefficients are used by the neural 

network model to predict the condition of the motor. The rise in temperature data is utilized to predict 

the life of stator winding insulation. 

2.2. Signal Analysis 

The signal sent to the processor board from the accelerometer is amplitudes of vibration with 

respect to the ground. They are measured in terms of unit ‘g' which has an equal representation as 

mm/sec2. The collected data is analyzed using MATLAB software. The flowchart of the proposed 

work is shown in Fig. 2. 
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Fig. 1. Block diagram of proposed system 

2.3. Wavelet Transformation 

The plotted curves are analyzed using wavelet transforms. Analysis of vibration signal requires 

the precise value of frequency, which changes abruptly from time to time. Considering Fourier 

transform as an analysis method in spite of converting time signals to frequency signals it fails to tell 

precisely where specific frequency rises. To extract a small portion of the signal where there is a 

sudden change in frequency another method called short time Fourier transform evolves. 

Though STFT seems to meet the requirement, it cannot detect the signals with the very low-

frequency component. Thus, Wavelet transform overcomes the previous problem. The wavelet 

function balances time and frequency domains. This technique allows for the exact localization of 

both extremely low-frequency and very high-frequency components. This flexibility increases the 

time-frequency analysis. Considering the advantages of wavelet transform this method is chosen as 

an analysis method for the vibration signal of the induction motor [28]. 

 
𝑐𝑤𝑡(𝑠, 𝜏) = 𝑠−1/2 ∫ 𝑥(𝑡)𝛹∗ (

𝑡 − 𝜏

𝑠
) 𝑑𝑡 (1) 

Where 𝑥(𝑡) is Measured signal in time domain, 𝜏 is Translational parameter, 𝑠 is scale function, 𝛹∗is 

Complex Conjugate, and 𝛹 is Shifted Wavelet function. 

 𝑐𝑤𝑡(𝑠, 𝑓) = 𝐹{𝑐𝑤𝑡(𝑠, 𝜏)} (2) 
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)

∞
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𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏 (3) 

 𝑐𝑤𝑡(𝑠, 𝑓) =  𝑠1/2𝑋(𝑓)𝛹∗(𝑠𝑓) (4) 

 
𝑐𝑤𝑡(𝑠, 𝜏) =

1

𝐹 (𝐶𝑊𝑇(𝑠, 𝑓))
 (5) 

 𝑐𝑤𝑡(𝑠, 𝜏) =  𝑠1/2𝐹−1{𝑋 (𝑓)𝛹∗(𝑠𝑓)} (6) 

It has become a powerful tool of the non-stationary signal. In wavelet transform among its two 

types namely continuous and discrete wavelet transforms. The Continuous wavelet transform is used 

to split a continuous-time function into wavelets as given in (1)–(6). Better time and frequency 

representation can be achieved by using the continuous wavelet transform compared to the Fourier 

transform. The Discrete Wavelet Transform (DWT) extracts the features from a signal. The features 

of the signals are extracted using this transform. The signal to be analyzed is divided into ‘n’ levels 

by filtering and decimation. Thus, coefficients of the signals are obtained. This can be classified as 

an approximation and detailed coefficients. The feature extraction of signals includes a few steps. 

Using DWT, the acquired vibration signals are separated into four distinct frequency bands. 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

143 
Vol. 4, No. 1, 2024, pp. 139-150 

  

 

C. S. Subash Kumar (Prognostic Real Time Analysis of Induction Motor) 

 

 

Fig. 2. Flow chart of proposed system 

The sub-bands containing high-frequency are detailed band coefficients, and sub-bands with low 

frequency are approximation band coefficients. The approximation coefficients are further 

decomposed to extract localized information about detail coefficients. The analyzed signal gives both 

approximate and detailed coefficients represented as 𝑎0 and 𝑑0 to 𝑑9 respectively.  

 The obtained wavelet coefficients are from the level 1 to level 9. The feature extraction of signals 

includes a few steps. The vibration signals obtained are divided into four individual sub-bands using 

Discrete Wavelet Transform as given in (7)-(8). The sub-bands containing high-frequency are 

detailed band coefficients, and sub-bands with low frequency are approximation band coefficients. 

The approximation coefficients are further decomposed to extract localized information about detail 

coefficients. 

[[𝑊𝜓𝑓](𝑠, 𝜏) =
1

√|𝑠|
∫ 𝜓(

𝑡 − 𝜏

𝑠

𝛼

−𝛼

𝑓(𝑡)] (7) 

𝑑𝑤𝑡(𝑗, 𝑘) = 2−
𝑗
2 ∫ 𝜓(𝑠−𝑗𝑥 − 𝑘𝜏) (8) 

where 𝑠 > 1, 𝜏 > 0 and 𝑗, 𝑘 𝜀 𝑍. DWT is defined as the transformation of the square-integral 

function, 𝑓. The bar above function, 𝛹 series, stands for conjugation. For the given 𝑠 and 𝜏, the 

transform result is a single real number, a wavelet coefficient. 
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Each level separates the frequency of the signal by ‘2n’ times. This gives the frequency feature 

of the signal. These coefficients are obtained for all the conditions of the motor and used as the input 

to the neural network for training and testing purpose [29]. 

2.4. Optimization 

A neural network is a mathematical system modeled by the framework, processing technique, 

and learning ability of a biological neuron. ANN gathers its knowledge by detecting the patterns and 

relationships in data. They learn or train through experiences, not from programming. The ANN is 

preferred because of its massive parallelism, their ability to learn, distributed representation, 

generalization ability, and fault tolerance. ANN is characterized by many simple processing elements 

that are neuron-like in nature, many weighted connections between these elements, and the 

acquisition of a distributed representation of knowledge over these connections and knowledge 

through a learning process [30].  

The neural network comprises an input layer with 300 neurons corresponding to the extracted 

wavelet coefficients. The hidden layers consist of 10 neurons each, utilizing sigmoid. The output 

layer has 3 neurons representing the three classes: good, allowable, and not permissible as shown in 

Fig. 3. The neural networks predict the exact working condition of the motor [32], [33]. The results 

are validated as per ISO 10816 standard [34].  

 

Fig. 3. Architecture of neural network 

The numerical coefficients are collected and formed into a dataset array in MATLAB. These 

arrays play the role of inputs in the neural network. The wavelet coefficients which are extracted 

from the wavelet transform used to train the neural. The dataset is created in order to train the neural 

and for the particular dataset, targets are also given. The neural network is trained using the 

Levenberg-Marquardt algorithm with an 80:20 split for training, and testing datasets. The Mean 

Squared Error (MSE) is used to evaluate the performance of the trained model [31]. 

3. Results and Discussion 

These values are collected for different conditions of motor such as good, allowable and not 

permissible as per ISO 10816 standard. The good condition indicates that the motor runs perfectly 

well without any vibrations, in allowable condition the motor have some vibrations but it doesn't affect 

the performance and life of the motor. In not permissible condition, the motor vibrates to the greater 

extent which damages the windings and may even reduce the life of the motor. The amplitude of the 

signals is plotted in a graph as amplitude vs. time basis as shown in Fig. 4. They can be grouped as 

X-array, Y-array, and Z- array. The values of wavelet coefficients during good, allowable and not 

permissible condition are given in Table 1. During not permissible condition, the amplitude and 

frequency of vibration changes and also the temperature of the motor rises abruptly which may cause 

insulation failure. It is observed that the decomposed Daubechies orthogonal wavelets d2 and d3 in 

Y- array shows significant variations during good and not permissible conditions as shown in Fig. 5 

and 6 respectively. During not permissible conditions there is rise in temperature of the motor and 

hence in addition to the vibration data, the temperature of the motor is also measured in degree 

Celsius for monitoring the condition of the motor. Decomposition of the Y-array original signal when 

the motor is in not permissible condition shown in Fig. 6. 
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Table 1.  Coefficients of signals for fault prediction 

X_Good 3208.419 3210.171 3208.794 3210.222 3209.046 320.888 3209.265 3209.443 3208.586 

X_Allowable 539.271 537.571 538.134 537.125 537.454 537.904 537.501 538.363 538.325 

X_Not 

permissible 
3301.281 3254.567 1.801 -3.075 -4.083 1.438 3.908 -4.391 -2.924 

Y_ Good 3263.747 3263.747 3263.747 3263.747 3263.763 3264.276 3264.379 3263.736 3263.68 

Y_ Allowable 539.271 537.571 538.134 537.125 537.454 537.904 537.501 538.363 538.325 
Y_ Not 

permissible 
3273.601 3272.045 3271.908 3271.438 -0.524 0.895 1.164 -0.406 -1.276 

Z_ Good 3202 3199.967 3201.406 3200.645 3201.981 3200.144 3201.204 3200.792 3202.035 

Z_ Allowable 
539. 

271 

537. 

571 

538. 

134 

537. 

125 

537. 

454 

537. 

904 

537. 

501 

538. 

363 

538. 

325 

Z_ Not 

permissible 
3185.514 3199.582 -2.417 3.739 4.248 1.082 0.002 3.780 2.934 

 

  
a) X-axis Vibration data in good condition b) X-axis Vibration data in not permissible condition 

  
c) Y-axis Vibration data in good condition d) Y-axis Vibration data in not permissible condition 

  
e) Z-axis Vibration data in good condition f) Z-axis Vibration data in not permissible condition 

Fig. 4. Comparison of vibration data in different axes in good and not permissible conditions 
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Fig. 5. Decomposition of the Y-array original signal when the motor is in good condition 

 

Fig. 6. Decomposition of the Y-array original signal when the motor is in not permissible condition 

3.1. Results from Temperature Sensor 

The temperature rise is associated with vibrations and faults occurring in the windings and other 

mechanical faults which lead to an increase in current magnitude. Increase in current causes more 

losses and temperature rise. The rise in hot spot temperature of the motor is associated with the 

insulation life [35]. The life of insulation can be predicted as given in (9) for less than rated load and 

for more than rated load is given by (10).  

 
𝐿𝑋 = 𝐿100 × 2 𝑒𝑥𝑝  [

𝑇𝐶 −  𝑇𝑋

𝐻𝐼𝐶
] (9) 

 
𝐿𝑋 =

𝐿100

2 𝑒𝑥𝑝 [
𝑇𝐶 −  𝑇𝑋

𝐻𝐼𝐶 ] 
 (10) 

𝐿𝑥 represents the lifetime percentage at 𝑥% load, 𝐿100 represents the lifetime percentage at rated 

load, and 𝑇𝑐 represents the total permitted temperature for insulating Class. 𝑇𝑥 is the insulation Class 

hot-spot temperature, and HIC is the halving interval [36].  
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The hot spot temperature is measured using a temperature sensor and the readings are tabulated 

in Table 2 for various load conditions for duration of one hour. It can be observed that if load varies, 

the temperature also varies which can be used for estimating the lifetime of the motor.  

Table 2.  Temperature of the stator with various loads 

LOAD 
Temperature (Celsius) 

Starting Hot Spot Temperature 

No load 28.18 60.28 

¼ load 30.18 73.77 

½ load 30.22 81.21 
¾ load 30.98 94.63 

Full load 31.23 104.9 

 

The observed temperature variations under different load conditions have significant 

implications for motor health. The rise in temperature, particularly at higher loads, is indicative of 

potential faults and can be utilized to estimate the remaining lifetime of the motor's insulation, 

aligning with IEEE Std 1-2000 standards [37]. 

The accuracy of the neural network model is 98%. The confusion matrix of the test data is shown 

in the Fig. 7. The proposed method performs good compared to methods as shown in Table 3. 

 

Fig. 7. Confusion matrix of the test data of proposed model 

Table 3.  Performance comparison 

Schemes /References Accuracy 

Proposed 98% 

CNN [38] 97.74% 

CNN [39] 97.37% 

CNN [40] 94.8% 

4. Conclusion 

 Vibration analysis plays a significant role in finding the fault in the motor in advance by 

analyzing the vibration signal's frequency level. This proposed idea paves the way for easy 

monitoring of the motor's condition. In addition to vibration, the temperature of the motor is also 

monitored continuously. The data are continuously collected from the corresponding sensors and 

analyzed by MATLAB software. The faults occurring in the motor can be predicted using vibration 

as per ISO 10816 standard and the life time of insulator used can calculated by measuring temperature 

and verified using IEEE Std 1-2000 standard. In addition to this, the condition monitoring can be 

done by wireless communications using Internet of Things (IoT). The wireless technology will help 

in remote and online monitoring of faults from remote locations.  
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Furthermore, the integration of Internet of Things (IoT) technologies enables wireless 

communication for real-time monitoring from remote locations. This advancement not only enhances 

the accessibility of fault information but also opens avenues for proactive maintenance strategies. 

Exploring the scalability of this approach in larger industrial settings and its integration with 

emerging technologies may open new avenues for comprehensive motor health management. The 

implementation of this methodology not only enhances predictive maintenance capabilities but also 

holds the potential to significantly reduce downtime and associated costs. Industries adopting this 

approach may experience more proactive fault management and prolonged equipment lifespan. 
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