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ABSTRACT

Similarity measures (SMs) are fundamental in various applications, includ-
ing identifying patterns within medical data and aiding pattern recognition
(PR) by quantifying the likeness between different patterns. Moreover, they
play a crucial role in real-world problems such as Multiple Criteria Deci-
sion Making (MCDM), where decision-makers assess and compare alterna-
tives based on multiple criteria simultaneously. Moreover, Cosine similarity
is a measurement that quantifies the similarity between two or more ob-
jects. This study presents a comprehensive exploration of Interval-Valued
Intuitionistic Fuzzy Cosine Similarity Measures (IV IFCSMs) as a novel
technique for assessing the degree of association between objects in real-
world applications. By extending traditional cosine similarity measures
(CSM ) to interval-valued intuitionistic fuzzy sets (IV IFS), the proposed
IV IFCSMs offer an effective framework for handling uncertainty, ambi-
guity, and imprecision in decision-making processes. The research demon-
strates the practical utility of IV IFCSMs in addressing complex issues in
PR, medical diagnosis (MD), and MCDM. In contrast to established meth-
ods like Singh’s, Xu’s, and Luo’s measures, our approach consistently gen-
erates higher similarity values, encompassing both membership (MF ) and
non-membership (NMF ) with interval values.

This is an open access article under the CC-BY-SA license.

1. Introduction

Classical set theory relies on a binary assessment of element MF , posing limitations in capturing
the nuanced aspects of uncertainty, vagueness, inconsistency, and imprecision inherent in human
nature and real-world scenarios. In addressing these complexities, alternative set theories such as
fuzzy sets (FS), intuitionistic fuzzy sets (IFS), and IV IFS have emerged [1]. Zadeh established
the idea of FS [2] in 1965 with the intention of capturing the subjectivity and ambiguity present
in real-world settings. This is accomplished by giving objects a range of MF grades. However,
this approach also presents challenges, particularly in terms of its foundation and the need for a
more robust theoretical framework. Atanassov [3] further developed this idea by introducing IFS , a
generalization of FS’s. Notably, expert Zadeh [4] independently introduced a significant extension
known as interval-valued fuzzy sets (IV FS), broadening the scope of FS theory by incorporating
intervals. The concept of IV IFS was introduced by Atanassov and Gargov [5] as a generalization of
IFS and IV FS .

In contrast to using crisp values, IV IFS’s employ interval values to describe the levels of MF ,
NMF function, and uncertainty for each element. These sets have received widespread attention in
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both theoretical research and practical applications, proving more effective in handling uncertain and
ambiguous information in actual environments compared to previous theories like FS’s and IFS’s.
The generalized nature of IV IFS’s has facilitated the more efficient resolution of complex decision-
making problems, PR, and MD [6].

As a result, numerous researchers have begun working on FS’s and their extensions, as well as
applying them to real-world issues [7] - [10]. The following are some relevant papers:

The experts [11] have introduced a novel distance measure for IV IFS’s, which is derived from
the concept of distance between interval numbers. The authors [12] created a novel integrated method
for handling MCDM problems with IV IFS is proposed with the help of the multi-attribute border
approximation area comparison method. Guo and Xu [13] established a new mathematical framework
for knowledge measure from FS’s through IV IFS’s. Based on the assessment of safety management
system (Fang et al. [14]) developed an energy investment risk using house of quality based on hybrid
stochastic interval-valued intuitionistic fuzzy (IVIF) decision-making approach. In [15] Li et al. in-
vestigated the IVIF approximate granular structure of a target concept and propose a new algorithm
and experiments for attribute reduction from the perspective of distance.

1.1. Similarity Measures

One important technique in fuzzy mathematics is the SM . It plays a crucial role in address-
ing real-world problems by providing quantitative measures of similarity between data instances.
They enable more effective decision-making, accurate diagnoses, and reliable PR in various domains,
thereby contributing to advancements in fields such as healthcare, decision science, and artificial in-
telligence. Moreover, the notion of measuring similarity between two things is fundamental to MD,
MCDM, and PR. Applications including topic identification, document clustering, automatic scoring,
duplication detection, and text categorization are just a few of the many uses for it. Measuring the
degree of similarity between two items is the primary objective of SMs. Stated otherwise, the SM
is a function that determines the similarity of two items are to one another. Every SM maps to either
the [0, 1] or [-1, 1] range. Absolute similarity is represented by 1, whereas minimum similarity is
represented by 0 or -1 [16]. There are several different SMs available in the literature right now. The
current measures of similarity fall into three groups, according to the study by Experts Gomaa and
Fahmy [17]: corpus-based, knowledge-based, and string-based similarity shown in Fig. 1.

Based on existing corpora, corpus-based SMs quantify the linguistic meaning and semantic
similarity of terms. Hyperspace Analogue to Language, Latent Semantic Analysis, Generalized La-
tent Semantic Analysis, and Explicit Semantic Analysis are a few well-known measures in this field.
Additionally, knowledge-based similarity uses semantic networks like WordNet—a sizable lexical
database that contains English nouns, verbs, adjectives, and adverbs—to indicate the degree of simi-
larity between words.

Additionally, string-based SMs rely on character decompositions and text sequences to assess
the similarity of two text strings are to one another. Character-based examples are Longest Common
Substring, Jaro Winkler, and N-grams, whereas term-based examples include Euclidean distance,
Dice coefficient, Jaccard coefficient, and Cosine similarity.

1.2. Cosine Similarity Measures

Cosine similarity measure is one of the similarity measures, which is derived from Bhattacharya’s
distance [18] and [19], can be expressed as the inner product of two vectors divided by the product
of their lengths. Essentially, it represents the cosine of the angle formed by two FS vector represen-
tations. A unique kind of similarity measure known as the cosine of the angle between two vectors is
the CSM . The vector representation uses the MF degree in FS’s to define the CSM for FS’s. This
approach is used to suggest certain cosine measure of similarity for IFS’s which are then used for
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Fig. 1. String-based similarity measures

PR and MD [20]. Later, the author, Ye [21], developed a SM for the IFS environment and created a
CSM as well as the weighted CSM . After that, a CSM is used by Singh and Ye [22], [23] to evaluate
the similarity between two IV IFS’s. Moreover, a strategy for solving group decision-making tasks
was devised by Liu et al. [24], grounded on the IV IFS-based weighted CSM . In recent years, the
experts [25] - [30] have developed and enhanced a CSM for IV IFS’s and applied it effectively to
tackle decision-making challenges. Evaluating two distinct objects from multiple perspectives is es-
sential when addressing a variety of real-world challenges, spanning fields like PR, decision making,
image processing, and machine learning. The choice of a compatibility or comparison measure can
vary depending on the specific problem domain. Among the notable compatibility and comparison
measures are SMs, distance measures, and correlation measures. Extensive literature exists regarding
the applications of these measures in both fuzzy and non-standard fuzzy scenarios [31], [32].

1.3. Literature Review

This paper primarily focuses on exploring SMs within the context of IV IFS The authors [34]
presented innovative SMs that involve combining the exponential function of MF s with the negative
function of NMF s. Additionally, within this paper, a novel entropy measure was presented as a
fundamental component for determining the criteria weights in the proposed MCDM model. Further,
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Mishra et al. announced a low-carbon tourism strategy evaluation with selection based on SMs [35].
In addition, Lee et al. [36] built a novel MCDM approach grounded on IFS , weighted SMs, and
the extended technique for order preference by similarity to ideal solution method. Furthermore, a
novel similarity among the IFS based on the transformation techniques with their characteristics and
applications are explored by Garg and Rani [37].

This article [38] introduces mathematical models of tumors used by the method of model predic-
tive control and determines the right dosage of the drug to reduce tumor density. The authors describe
a dice similarity measure for IFS’s that is implemented to various classification problems in PR and
MD [39]. A measure of similarity serves as a valuable tool for recognizing patterns in various fields
where the optimal decisions or criteria for optimality have been specified. Likewise, Donyatalab et al.
recommended a novel SM for spherical FS’s as well as applied it to the field of MD problems [40].

Azita Mousavi et al. [41], [42] investigated the face recognition percentage of the identity check
system applied by the SVM pattern recognition algorithm on the face image, and they executed this
method in the ORL database. In this work, an interval agreement approach method for calculating the
degree of similarity between two aggregated fuzzy numbers is presented [43]. The main findings of
this article are the proposal of new similarity measures for spherical fuzzy sets and T-spherical fuzzy
sets, which are applied to the PR problem [44]. The authors proposed the similarity and weighted
similarity measures by considering MF , NMF , and the indeterminacy of MF degree between the
q-ROFSs [45]. In this work, the authors provide new similarity measures for PFSs, which are used in
PR [46].

The following are the main reasons that motivated us to consider the present study: Taking a
closer look at the current SMs for IV IFS’s, it becomes evident that devising a robust IV IFS SM
is quite difficult. Some of these measures fail to fully adhere to the axiomatic definition of similarity,
leading to counterintuitive outcomes, as demonstrated by researchers who have found counterintuitive
examples for many existing measures.

There are several shortcomings in many of the current SMs for IV IFS’s; the majority of them
provide findings that are counterintuitive in certain circumstances and are unable to provide accurate
classification results for issues related to PR and MD. To compute the SMs between P and Qi (i = 1,
2), for example, let P = < [0.20, 0.30], [0.40, 0.60] >, Q1 = < [0.30, 0.40], [0.40, 0.60] >, and Q2 =
< [0.30, 0.40], [0.30, 0.50] > be IV IFS’s. These may be found using Formulas (2), (3) and (5) see
Section 3. Since the MF degree of Q1 and Q2 are the same, and the NMF degree of Q1 and Q2

differs, it follows that the outcome is Q1 ̸= Q2. As a result, Si(P,Q1) = Si(P,Q2) (i = 1, 2). But
using Formulas (2) and (3), we can get that S1(P,Q1) = S2(P,Q1) = S1(P,Q2) = S2(P,Q2) =
0.9, which is unreasonable. In the meantime, Formula (5) makes it possible to obtain SD(P,Q1) = 1,
which does not meet the second postulate of the definition for SM . To address these shortcomings,
we need to create a new similarity measurement.

Additionally, other SMs lack a defined physical interpretation and involve highly complex ex-
pressions. Initially, many of these measures were primarily focused on their mathematical formulas.
Consequently, there is a need for a more comprehensible IV IFS SM . It is also worth noting that
previous studies [47], [23], [22] did not incorporate the middle and boundary points of the intervals
into their approaches. Therefore, formulating an effective SM remains an unresolved challenge that
is attracting increased attention. Because of these limitations, the measurement procedure is unable
to account for the preferences of the decision-maker. This highlights the limitations and inflexibility
of these measures when applied to real-world problems. Therefore, within the context of IV IFS ,
there is a need for a robust CSM that can incorporate the decision maker’s attitude preferences into
the measurement process.
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1.4. Research Objectives of this Study

The research objective of this study is to introduce and validate a novel technique for assessing
the degree of association between two objects. Specifically, the focus is on developing IVIFCSMs
based on the concept of cosine similarity. The aim is to create a measure that not only adheres to
important practical criteria but also demonstrates its effectiveness in addressing real-world problems.
The study applies this novel measure to MCDM problems, MD scenarios, and PR scenarios involving
IVIF information. The research provides numerical examples showing the application of the proposed
method. In brief, the study objectives are to propose a new SM for IV IFS’s, present its properties,
compare it with existing measures, and apply it in PR, MD and MCDM.

1.4.1. Goal and Contribution of the Study

The goal of this study is to provide an effective SM for the IV IFS environment that performs
better than methods found in [22], [47] - [50]. In particular, this paper:

• Reviews some of the existing similarity techniques;

• Suggests an enhanced IV IFS similarity technique;

• Compares the new similarity technique in the IV IFS domain;

• Uses the new similarity technique to identify some real-world scenarios.

In light of the preceding information, the contribution of our approach unfolds as follows: we
first develop a unique CSM for IV IFS’s based on the aspect of CSM between IV IFS’s. Second, we
used the concept of a SM to validate the fundamental and necessary aspects of a suggested similarity
measure. Furthermore, the suggested approach’s application to several real-world issues involving
IVIF information is investigated. The suggested measure’s numerical examples are then compared to
other sophisticated measurements to demonstrate its effectiveness.

1.4.2. Structure of the Article

The remainder of the paper is designed as follows. Section 2 summarizes the fundamental no-
tions of IV IFS and SMs. Section 3 examines various existing similarity measures. In Section 4,
we present the IVIFCSM between two IV IFS’s. In addition, various features of the IVIFCSMs
are investigated. Section 5 applies the IVIFCSM to real-world issues such as MD, PR, and MCDM
with IVIF information, as well as demonstrative with numerical examples. Section 6 outlines the key
findings and conclusions of the article.

2. Preliminaries

This section discusses the fundamental ideas associated with IV IFS’s that were utilized in our
work.

Definition 2.1 (FS). [2]

A fuzzy set A in X is characterized by a MF function µA(x) which associates with each point
in X a real number in the interval [0, 1], with the value of µA(x) at x representing the grade of MF
function of x in A.

• if µA(x) = 0, then it represents to NMF function.

• if 0 < µA(x) < 1, then it represents to partial MF function.
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• if µA(x) = 1, then it represents the full-membership function.

A FS can be classified into continuous FS or discrete FS . The continuous FS A can be written in the
form

A = {⟨x, µA(x)⟩|x ∈ X,µA(x) ∈ [0, 1]}.

The discrete FS A can be represented in the following form

A =

〈
µA(x1)

x1
, µA(x2)

x2
, ....µA(xn)

xn

〉
, ∀xi ∈ X , i = 1, 2, ....., n.

Let us mainfest FS’s over crisp sets through the following example:
Example:

“Sathyamangalam is located in Coimbatore?”. For this question, the answer is either yes (1)
or no (0). Here, the MF function possibilities are zero-membership function or full-membership
function only. Hence it is crisp set.

“Anu is a honest person?”. For this the answer maybe any of the following, extremely dishonest
(0) or extremly honest (1) or honest at time (0.3) or very honest (0.7). Hence this be relevant to the
FS .

Definition 2.2 (IFS). [3]

An IFS of A in E is defined by the formula

A = {⟨x, µA(x), νA(x)⟩|x ∈ E}.

For any x ∈ E, 0 ≤ µA(x) + νA(x) ≤ 1, and the functions µA, νA : E −→ [0, 1] defines the degree
of MF & NMF , respectively. The third parameter within the IFS A is the hesitancy degree of
whether x is in A or not, represented as πA(x) = 1 − µA(x) − νA(x). This parameter is bounded
between 0 to 1. Here, E is a fixed, non-FS . The hesitation degree is a part of MF function of degree
or part of NMF function of degree or both. The following example describe the above three degrees:
Example:

Let us consider the set of people in age group 17 year and above is a domain of discourse. The
MF function of degree, hesitation degree and NMF function of degree of the IFS is described as
follows:

If we denote the young people in age group between 17 − 40 year by MF function of degrees,
then we denote the old people in age group 55 year and above by NMF function of degree. The
people in the age group between 40− 55 years may be considered as young or old or both. Thus, we
can represent these people (age group between 40− 55 year) by hesitation degree.

Definition 2.3 (IV IFS). [5]

Let R be the IV IFS in the universe of discourse X , then

R = {⟨x, µR(x), νR(x)⟩|x ∈ X}.
= {⟨x, [µ−

R(x), µ
+
R(x)], [ν

−
R (x), ν

+
R (x)]⟩|x ∈ X}

In this case, µR(x), νR(x) ⊆ [0, 1] satisfy 0 ≤ µR(x) + νR(x) ≤ 1. Moreover, the intervals
µR(x) and νR(x) represent the degrees of MF & NMF , respectively. Additionally, we will calculate
the degree of hesitancy for every x ∈ X as follows: πR(x) = [π−

R(x), π
+
R(x)] = [1 − µ+

R(x) −
ν+R (x), 1− µ−

R(x)− ν−R (x)].
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Definition 2.4. [47]

Let R and T be the two IV IFS’s in the universe of discourse X , then

1. R ⊆ T iff (∀ x ∈ X) µ−
R(x) ≤ µ−

T (x), µ
+
R(x) ≤ µ+

T (x), ν
−
R (x) ≤ ν−T (x), and ν+R (x) ≤ ν+T (x).

2. R = T iff (∀ x ∈ X) µ−
R(x) = µ−

T (x), µ
+
R(x) = µ+

T (x), ν
−
R (x) = ν−T (x), and ν+R (x) = ν+T (x).

3. Rc = {x, [ν−R (x), ν
+
R (x)], [µ

−
R(x), µ

+
R(x)]}.

Definition 2.5 (Similarity Measures). [47]

Suppose X = {x1, x2, · · · , xn} is the universe of discourse. Let R and T represent two
IV IFS’s. Consider a mapping S : IV IFS(X) × IV IFS(X) → [0, 1], where S(R, T ) represents a
SM between R and T . For S(R, T ) to be considered a SM , it must satisfy the following conditions:

1. 0 ≤ S(R, T ) ≤ 1,

2. S(R, T ) = 1 ⇐⇒ R = T,

3. S(R, T ) = S(T,R),

4. If R ⊆ T ⊆ V, then S(R, V ) ≤ S(R, T ), and S(R, V ) ≤ S(T, V ).

3. An Overview of Existing Similarity Measures

In this part, we will look at several existing SMs. Consider R = {(xi, [µ
−
R
(xi), µ

+
R
(xi)], [ν

−
R

(xi), ν
+
R

(xi)])|xi ∈

X} and T = {(xi, [µ
−
T
(xi), µ

+
T
(xi)], [ν

−
T

(xi), ν
+
T

(xi)])|xi ∈ X} are two IV IFS’s defned in X = {x1, x2, · · · , xn}.
Then the following Formulas (1) - (6) are IV IFS-based SMs:

Singh’s Measure [22]

SC(R, T ) =
1

n

n∑
i=1

α1β1 + δ1γ1√
α2
1 + δ21

√
β2
1 + γ21

. (1)

α1 = (µ−
R(xi) + µ+

R(xi)), β1 = (µ−
T (xi) + µ+

T (xi)), δ1 = (ν−R (xi) + ν+R (xi)) and γ1 = (ν−T (xi) +
ν+T (xi)).

Advantages and Limitations of Singh’s Measure: Singh was the first to uncover cosine similarity
measures for IV IFS’s. It didn’t meet some axiomatic defintions of SMs and didn’t include the
middle and boundary points of the intervals in their methods.

Xu’s Measure [50]

S1(R, T ) = 1− P

√√√√ 1

4n

n∑
i=1

(
|µ−

R
(xi) − µ−

T
(xi)|p + |µ+

R
(xi) − µ+

T
(xi)|p + |ν−

R
(xi) − ν−

T
(xi)|p + |ν+

R
(xi) − ν+

T
(xi)|p

). (2)

S2(R, T ) = 1− P

√√√√ 1

n

n∑
i=1

max
{
|µ−

R
(xi) − µ−

T
(xi)|p, |µ

+
R
(xi) − µ+

T
(xi)|p, |ν

−
R

(xi) − ν−
T

(xi)|p, |ν
+
R

(xi) − ν+
T

(xi)|p
}
. (3)

Advantages and Limitations of Xu’s Measure: The authors developed distance and similarity
measures of IV IFS on the basis of the Hamming, Euclidean and Hausdorff distance eventhough it
didn’t meet some axiomatic defintions of SMs.
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Wei’s Measure [49]

SW (R, T ) =
1

n

n∑
i=1

2−min(µ−
i , ν

−
i )−min(µ+

i , ν
+
i )

2 + max(µ−
i , ν

−
i ) + max(µ+

i , ν
+
i )

, (4)

where µ−
i = |µ−

R(xi)−µ−
T (xi)|, µ

+
i = |µ+

R(xi)−µ+
T (xi)|, ν

−
i = |ν−R (xi)−ν−T (xi)|, ν

+
i = |ν+R (xi)−

ν+T (xi)|.
Advantages and Limitations of Wei’s Measure: The experts developed the similarity measures

using entropy measures for IV IFS although it didn’t meet some axiomatic defintions of SMs.

Dhivya’s Measure [48]

SD(R, T ) = 1− 1

n

n∑
i=1

{
(
1

2
|χ−

R(xi)− χ−
T (xi)|+ |χ+

R(xi)− χ+
T (xi)|)(1−

σR(xi) + σT (xi)

2
)

+|σR(xi) + σT (xi)|(
σR(xi) + σT (xi)

2
)
}
,

(5)

where χ−
R =

(µ−
R(xi)+1−ν−R (xi))

2 ,

χ+
R =

(µ+
R(xi)+1−ν+R (xi))

2 ,

χ−
T =

(µ−
T (xi)+1−ν−T (xi))

2

χ+
T =

(µ+
T (xi)+1−ν+T (xi))

2 ,

σR(xi) = 1− 1
2(µ

−
R(xi) + µ+

R(xi) + ν−R (xi) + ν+R (xi)),

σT (xi) = 1− (µ−
T (xi)+µ+

T (xi)+ν−T (xi)+ν+T (xi))
2 .

Advantages and Limitations of Dhivya’s Measure: This article investigated effectively the sim-
ilarity measures between IV IFS based on the mid points of transformed triangular fuzzy numbers.
Lastly, it did not satisfy some axiomatic definitions of SMs.

Luo’s Measure [47]

SL(R,T )=1−{ 1
2n

∑n
i=1

|t1(µ
−
R

(xi)−µ−
T

(xi))+(µ+
R

(xi)−µ+
T

(xi))−(ν−
R

(xi)−ν−
T

(xi))+(ν+
R

(xi)−ν+
T

(xi))|
p

|2(t1+1)|p

|t2(ν
−
R

(xi)−ν−
T

(xi))+(ν+
R

(xi)−ν+
T

(xi))−(µ−
R

(xi)−µ−
T

(xi))+(µ+
R

(xi)−µ+
T

(xi))|
p

|2(t2+1)|p }
1
p , (6)

where t1, t2, p ∈ [1,+∞), p is the Lp-norm.

Advantages and Limitations of Luo’s Measure: Luo and Liang successfully examined the SMs
between IV IFS based on the transformed interval-valued intuitionistic triangle fuzzy numbers, yet it
did not satisfy some axiomatic definitions of SMs.

4. Development of New Similarity Measure

This section presents a novel mechanism for formulating a new IV IFS SM by modifying an
existing IV IFS measure. The article by Singh [22] introduced a new SM for the comparison of
IV IFS’s. Particularly, it promotes new SM of IV IFS’s. Next, the suggested study’s flowchart is
shown in Fig. 2.

Let R be an IV IFS in the universe of discourse X = x. The MF and NMF of IV IFS are
described by [µ−

R(xi), µ
+
R(xi)], [ν

−
R (xi), ν

+
R (xi)], which can be thought of as a vector representation

containing the two elements. Accordingly, a cosine similarity measure equivalent to the one based on
Bhattacharya’s distance is provided for IV IFS’s.
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Fig. 2. the suggested study’s flowchart

Definition 4.1.

Consider R={(xi,[µ
−
R

(xi),µ
+
R

(xi)],[ν
−
R

(xi),ν
+
R

(xi)])|xi∈X} and T={(xi,[µ
−
T

(xi),µ
+
T

(xi)],[ν
−
T

(xi),ν
+
T

(xi)])|xi∈X} are two
IV IFS’s defned in X = {x1, x2, · · · , xn}, the novel SM among the IV IFS’s R and T (SPP (R, T ))
is specifed as follows:

SPP (R, T ) = 1
3

(
S1
PP (R, T ) + S2

PP (R, T ) + S3
PP (R, T )

)
.

SPP (R,T )= 1
3

 1
n

∑n
i=1

α1β1+δ1γ1√
α2
1+δ21

√
β21+γ21

+ 1
n

∑n
i=1

α2β2+δ2γ2√
α2
2+δ22

√
β22+γ22

= 1
n

∑n
i=1

α3β3+δ3γ3√
α2
3+δ23

√
β23+γ23

. (7)

In this context, S1
PP (R, T ) is the known SM [22], S2

PP (R, T ) means the middle term of the
S1
PP (R, T ). S3

PP (R, T ) signifies the complement of MF and NMF of R−, R+, T− and T+ respec-
tively. In this measure, α1 = (µ−

R(xi)+µ+
R(xi)), β1 = (µ−

T (xi)+µ+
T (xi)), δ1 = (ν−R (xi)+ν+R (xi)),

γ1 = (ν−T (xi) + ν+T (xi)), α2 = (
µ−
R(xi)+1−ν−R (xi)

2 +
µ+
R(xi)+1−ν+R (xi)

2 ), β2 = (
µ−
T (xi)+1−ν−T (xi)

2 +
µ+
T (xi)+1−ν+T (xi)

2 ), δ2 = (ν−R (xi) + ν+R (xi)), γ2 = (ν−T (xi) + ν+T (xi)), α3 = ((1 − µ−
R(xi) +

(1 − µ−
T (xi)), β3 = ((1 − µ+

R(xi) + (1 − µ+
T (xi)), δ3 = ((1 − ν+R (xi)) + (1 − ν+T (xi)), and

γ3 = ((1− ν−R (xi) + (1− ν−T (xi)).

Additionally, the suggested SM fulfills the subsequent fundamental rules:

1. 0 ≤ S(R, T ) ≤ 1,

2. S(R, T ) = 1 ⇐⇒ R = T,

3. S(R, T ) = S(T,R),
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4. If R ⊆ T ⊆ V, then S(R, V ) ≤ S(R, T ), and S(R, V ) ≤ S(T, V ).

Theorem 4.1. 0 ≤ SPP (R, T ) ≤ 1.

Proof. According to the induction hypothesis, for any ϵ1 ≥ 0, ϵ2 ≥ 0, υ1 ≥ 0, υ2 ≥ 0, we have
(ϵ1υ2 − ϵ2υ1)2 ≥ 0 ⇐⇒ (ϵ1υ1+ϵ2υ2)2≤((ϵ1)2+(ϵ2)2)((υ1)2+(υ2)2)

iff 0≤(ϵ1υ1+ϵ2υ2)≤
√

(ϵ1)2+(ϵ2)2
√

(υ1)2+(υ2)2 iff 0 ≤ ϵ1υ1+ϵ2υ2√
(ϵ1)2+(ϵ2)2

√
(υ1)2+(υ2)2

≤ 1.

R and T have MF and NMF intervals between 0 and 1. It is clear that 0 ≤ S1
PP (R, T ) ≤ 1.

Likewise, 0 ≤ S2
PP (R, T ) ≤ 1 and 0 ≤ S3

PP (R, T ) ≤ 1 are proven. Considering the fact, we get
0 ≤ SPP (R, T ) ≤ 1.

Theorem 4.2. SPP (R, T ) = 1 ⇐⇒ R = T .

Proof. Now, let us examine the following induction, SPP (R, T ) = 1 ⇐⇒ (S1
PP (R, T )+S2

PP (R, T )+
S3
PP (R, T )) = 3 if and only if S1

PP (R, T ) = 1, S2
PP (R, T ) = 1 and S3

PP (R, T ) = 1⇔
[µ−

R(xi) + µ+
R(xi)]× [ν−T (xi) + ν+T (xi)] = [ν−R (xi) + ν+R (xi)]× [µ−

T (xi) + µ+
T (xi)]

⇔
[(

µ−
R

(xi)+1−ν−
R

(xi)

2
)+(

µ+
R

(xi)+1−ν+
R

(xi)

2
)]×[ν−T (xi)+ν+T (xi)]=[ν−R (xi)+ν+R (xi)]×[(

µ−
T

(xi)+1−ν−
T

(xi)

2
)+(

µ+
T

(xi)+1−ν+
T

(xi)

2
)]

⇔
[(1−µ−

R(xi))+(1−µ−
T (xi))]×[(1−ν−R (xi))+(1−ν−T (xi))]=[(1−ν+R (xi))+(1−ν+T (xi))]×[(1−ν−R (xi))+(1−ν−T (xi))]⇔

µ−
R(xi) = µ−

T (xi),

ν−R (xi) = ν−T (xi),

µ+
R(xi) = µ+

T (xi),

ν+R (xi) = ν+T (xi) if and only if R = T.

Since SPP (R, T ) = 1
3(S

1
PP (R, T ) + S2

PP (R, T ) + S3
PP (R, T )), then SPP (R, T ) = 1 if and only if

R = T.

Theorem 4.3. SPP (R, T ) = SPP (T,R).

Proof. According to the principle of symmetry which states that, “Let R be a relation on A. Then, R
is called symmetric, if (a1, a2) ∈ R ⇔ (a2, a1) ∈ R”. Hence, we can conclude that S1

PP (R, T ) is
equal to S1

PP (T,R), S2
PP (R, T ) is equal to S2

PP (T,R), and S3
PP (R, T ) is equal to S3

PP (T,R). The
equation SPP (R, T ) = 1

3(S
1
PP (R, T ) + S2

PP (R, T ) + S3
PP (R, T )) implies that SPP (R, T ) is equal

to SPP (T,R).

Theorem 4.4. SPP (R, V ) ≤ SPP (R, T ), and SPP (R, V ) ≤ SPP (T, V ) if R ⊆ T ⊆ V .

Proof. Consider the function h, defined as h(υ1) = ϵ1υ1+ϵ2υ2√
(υ1)2+(υ2)2

. If we take h’s derivative with

regard to υ1, we get d
dυ1h(υ

1) = υ2(ϵ1υ2−ϵ2υ1)

((υ1)2+(υ2)2)
3
2

, where ϵ1 = [µ−
R(xi) + µ+

R(xi)], ϵ
2 = [ν−R (xi) +

ν+R (xi)], υ
1 = [µ−

T (xi)+µ+
T (xi)], and υ2 = [ν−T (xi)+ ν+T (xi)]. h(υ

1) is a decreasing function of υ1

if d
dυ1h(υ

1) < 0.

Consider the another function g, defined as g(υ2) = ϵ1υ1+ϵ2υ2√
(υ1)2+(υ2)2

. If we take g’s derivative with

regard to υ2, we get d
dυ2 g(υ

2) = υ1(ϵ2υ1−ϵ1υ2)

((υ1)2+(υ2)2)
3
2

. g(υ2) is an increasing function of υ2 if d
dυ2 g(υ

2) >

0.
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The finite universal set X has been divided into two disjoint subsets, X1 & X2, with the condition
that X1 ∪X2 = X . For all xi ∈ X1,

(µ−
R(xi)+µ+

R(xi))≤(µ−
T (xi)+µ+

T (xi))≤(µ−
V (xi)+µ+

V (xi))≤(ν−V (xi)+ν+V (xi))≤(ν−T (xi)+ν+T (xi))≤(ν−R (xi)+ν+R (xi)),

then for all xi ∈ X2,

(µ−
R(xi)+µ+

R(xi))≥(µ−
T (xi)+µ+

T (xi))≥(µ−
V (xi)+µ+

V (xi))≥(ν−V (xi)+ν+V (xi))≥(ν−T (xi)+ν+T (xi))≥(ν−R (xi)+ν+R (xi)).

Therefore,

S1
PP (R, V ) =

E∆+BZ√
E2 +B2

√
∆2 + Z2

≤ α1β1 + δ1γ1√
α2
1 + δ21

√
β2
1 + γ21

= S1
PP (R, T )

wherein E=(µ−
R(xi)+µ+

R(xi)), ∆=(µ−
T (xi)+µ+

T (xi)), B=(ν−R (xi)+ν+R (xi)) and Z=(ν−T (xi)+ν+T (xi)). We can demon-
strate that S1

PP (R,V )≤S1
PP (T,V ). The forms of S2

PP and S3
PP are identical to S1

PP . If R⊆T⊆V , we
have S2

PP (R,V )≤S2
PP (R,T ), S2

PP (R,V )≤S2
PP (T,V ), and S3

PP (R,V )≤S3
PP (R,T ), S3

PP (R,V )≤S3
PP (T,V ). There-

fore, SPP (R, V ) ≤ SPP (R, T ) and SPP (R, V ) ≤ SPP (T, V ) if R ⊆ T ⊆ V . Therefore,
SPP (R, T ) is a similarity measure.

Remark 1. Consider the following two IV IFS’s: R={x,[0,0.1],[0,0.1]} and T={x,[0.1,0.3],[0,0.4]}. The CSM

for R and T is SC(R, T ) = 1. R ̸= T , yet the similarity level is equal to 1. As a result, Definition
(2.5)’s condition (ii) is not met. On the other hand, SPP (R, T ) = 0.9783 between IV IFS’s R and
T . As a result, it meets criterion (ii) of Definition (2.5).

Remark 2. If R = {x, [0, 0], [0.1, 0.2]} and T = {x, [0.1, 0.2], [0, 0]} are two IV IFS’s, then the
CSM between them is zero. This result is unreasonable. After applying the proposed SM , the
obtained result for SPP (R, T ) = 0.6472, which is considered reasonable.

Note 1. Based on the observations made in Remarks 1 and 2, it is demonstrated that SPP is more
effective and reasonable than CSM between IV IFS’s.

Example 4.1. If Ri and Ti are two IV IFS’s, we can calculate the SM ’s between them using the
various SM ’s represented in Table 1.

Table 1. A comparative analysis of SMs within the context of IV IFS’s

1 2 3 4
Ri ([0.2,0.3], [0.4,0.6]) ([0.2,0.3], [0.4,0.6]) ([0.2,0.3], [0.3,0.5]) ([0.2,0.3], [0.3,0.5])
Ti ([0.3,0.4], [0.4,0.6]) ([0.3,0.4], [0.3,0.5]) ([0.3,0.4], [0.4,0.6]) ([0.3,0.4], [0.3,0.5])

S1 [50] 0.90 0.90 0.90 0.95
S2 [50] 0.90 0.90 0.90 0.90
SD [48] 1.00 0.98 0.95 0.94
SL [47] 0.95 0.90 0.80 0.94
SC [22] 0.98 0.96 0.99 0.98
SPP 0.98 0.97 0.99 0.96

In Table 1, when we examine the first and second columns, we observe that Si(R1,T1)=Si(R2,T2)

(i = 1, 2), given the condition R1 = R2 and T1 ̸= T2. Similarly, upon comparing the third and fourth
columns, we identify that S3(R3, T3) = S4(R4, T4) when R3 = R4 and T3 ̸= T4. Consequently,
it becomes evident that the SM ’s S1 and S2 may not be suitable. In the meantime, we discover
that SD(R1, T1) = 1 when R1 ̸= T1, which contradicts the second axiom of SM definition. Most
crucially, the suggested SM ’s, SPP and SL, can effectively address these disadvantages.
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It is also worth noting that previous studies [47], [23], [22] did not incorporate the middle and
boundary points of the intervals into their approaches. But our proposed measure incorporates the
middle and boundary terms as well as it qualifies the axiomatic definitions. As indicated in Table 1,
our proposed measure consistently outperforms other sophisticated techniques. Consequently, we can
conclude that our innovative IV IFS SM is more reasonable than the alternatives.

5. Applications

In this part, real-world issues are solved using the suggested SM in an IV IFS’s environment,
and the outcomes are compared with some of the other SMs that are currently in use. The proposed
SM can be applied to real-world problems such as PR, MCDM and MD by representing data as
IV IFS’s.

5.1. Applications for PR

5.1.1. Procedure for PR

Taking X to be a finite universe of discourse, consisting of elements x1,x2··· ,xn, we can observe
that there are m patterns labeled by IV IFS’s Rj={(x1,[µ

−
Rj

(x1),µ
+
Rj

(x1)],[ν
−
Rj

(x1),ν
+
Rj

(x1)]),

··· ,(xn,[µ
−
Rj

(xn),µ
+
Rj

(xn)],[ν
−
Rj

(xn),ν
+
Rj

(xn)]):x1,··· ,xn∈X} (where j ranges from 1 to m). Additionally, there
is a test sample that has been classified with an IV IFS T={(x1,[µ

−
T (x1),µ

+
T (x1)],[ν

−
T (x1),ν

+
T (x1)]),

··· ,(xn,[µ
−
T (xn),µ

+
T (xn)],[ν

−
T (xn),ν

+
T (xn)]):x1,··· ,xn∈X}. The recognition procedure can be described as given:

Step 1: Calculate the S(Rj , T ) similarity measure for Rj (j lies between 1 to m) & T .

Step 2: To find the highest S(Rj0 , T ) value, we need to compare the values of S(Rj , T ) for each j
(where j ranges from 1 to m). In other words, we want to determine the maximum value
among S(R1, T ), · · · , S(Rm, T ). Afterwards, the test sample T is classified according to
the pattern Rj0 .

5.1.2. Ore Classification in a Coal Mining Area

In PR, the SM can help in comparing patterns or objects represented by IV IFS’s, where objects
may have uncertain boundaries or characteristics.

Example 5.1. In a coal mining area, there are four different types of ores labeled Rj (j=1,2,3,4). Each
type of ore is represented by IV IFS’s

Rj={(x1,[µ
−
Rj

(x1),µ
+
Rj

(x1)],[ν
−
Rj

(x1),ν
+
Rj

(x1)]),...,(x4,[µ
−
Rj

(x4),µ
+
Rj

(x4)],[ν
−
Rj

(x4),ν
+
Rj

(x4)]):x1,...,x4∈X},

as shown in Table 2. Our objective is to simply classify T into one of the four categories of ores
mentioned above with the help of SM , as T is an unknown ore. Calculate the S(Rj , T ) similarity
between Rj and T .

Table 2. Feature matrices

F-1 F- 2 F-3 F- 4

R1 ([0.10, 0.50], [0.20, 0.30]) ([0.10, 0.30], [0.00, 0.20]) ([0.30, 0.50], [0.20, 0.40]) ([0.20, 0.50], [0.10, 0.30])

R2 ([0.20, 0.40], [0.15, 0.35]) ([0.20, 0.20], [0.05, 0.15]) ([0.20, 0.60], [0.30, 0.30]) ([0.30, 0.40], [0.15, 0.25])

R3 ([0.15, 0.30], [0.30, 0.40]) ([0.20, 0.40], [0.50, 0.60]) ([0.50, 0.60], [0.15, 0.35]) ([0.25, 0.45], [0.30, 0.40])

R4 ([0.20, 0.35], [0.10, 0.65]) ([0.35, 0.60], [0.05, 0.30]) ([0.15, 0.30], [0.40, 0.55]) ([0.15, 0.25], [0.45, 0.55])

T ([0.30, 0.40], [0.10, 0.50]) ([0.10, 0.40], [0.25, 0.40]) ([0.20, 0.30], [0.10, 0.35]) ([0.15, 0.40], [0.20.0.50])
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Looking at the results in Table 3, it is evident that when using S1 for PR, the authors find that
S1(R1, T ) = S1(R2, T ) = S1(R4, T ) > S1(R3, T ). Thus, we cannot categorize sample T into a
pattern.

SW (R2, T ) = SW (R4, T ) > SW (R1, T ) = SW (R3, T ) can be obtained using SW pattern
recognition. Thus, we cannot determine if sample T belongs to R2 or R4.

Additionally, if we use SD for PR, we find that SD (R3, T ) = SD (R4, T ) > SD (R2, T ) >
SD(R1, T ). This means we cannot determine whether sample T belongs to R3 or R4.

Moreover, when we use SC for PR, we find that SC(R4, T ) < SC (R1, T ) = SC (R2, T ) <
SC (R3, T ). This means we cannot pinpoint whether sample T belongs to R1 or R2.

Likewise, by looking at Table 3, we can see that SL (R1, T ) > SL (R2, T ) < SL (R3, T ) >
SL (R4, T ). Additionally, when using SPP for pattern recognition, we find that SPP (R1, T ) <
SPP (R2, T ) < SPP (R3, T ) > SPP (R4, T ).

According to the recognition principle, both S2 and SL yield similar recognition results, meaning
that sample T can be categorized as pattern R3. However, when using S2 for similarity measurement,
we cannot differentiate between R2 and R4. We conclude from Fig. 3 and Table 3 that SL and SPP

measures yield mostly the same results, but SPP is higher than SL. In this way, pattern R3 can be
applied to sample T .

Table 3. PR outcomes using various SMs

S (R1, T ) S (R2, T ) S (R3, T ) S (R4, T ) Classification results

S1 [22] 0.87 0.87 0.86 0.87 N.A.
S2 [22] 0.75 0.76 0.79 0.76 N.A.
SW [49] 0.78 0.79 0.78 0.79 N.A.
SD [48] 0.82 0.86 0.88 0.88 N.A.
SL [47] 0.82 0.81 0.88 0.75 R3

SC [22] 0.95 0.95 0.97 0.92 N.A.
SPP 0.95 0.96 0.97 0.93 R3

N.A. not applicable

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

Various Measures

S
im

ila
rit

y 
M

ea
su

re
 V

al
ue

s

 

 

S(R1,T)

S(R2,T)

S(R3,T)

S(R4,T)

Fig. 3. Classification results of PR problem

Example 5.2. To illustrate the proposed SM , let us consider a PR scenario where we are trying to
classify different building materials. In our feature space, represented by X = {x1, x2, · · · , x12},
there are four main classes of building materials denoted by IV IFS

Rj={(x1,[µ
−
Rj

(x1),µ
+
Rj

(x1)],[ν
−
Rj

(x1),ν
+
Rj

(x1)]),··· ,(x12,[µ
−
Rj

(x12),µ
+
Rj

(x12)],[ν
−
Rj

(x12),ν
+
Rj

(x12)]):x1,··· ,x12∈X}(j=1,··· ,12).
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Now, we have an unknown pattern T as all shown in Table 4. Next, we use the proposed formula
to calculate the SM , S(Rj , T ), between the IV IFS Rj(j = 1, 2, 3, 4) and T . This SM is a unique
aspect of S1 and S2, and the computed result matches what is mentioned in the literature [47]. How-
ever, based on the recognition principle, as shown in Table 5 and Figs. 4, 5, we can accurately classify
the unknown pattern in R4 by using this SM . This result aligns with the findings of Luo and Liang
in 2018.

Table 4. Unknown pattern T

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

R1 ([0.1,0.2],[0.5,0.6]) ([0.1,0.2],[0.7,0.8]) ([0.5,0.6],[0.3,0.4]) ([0.8,0.9],[0.0,0.1]) ([0.4,0.5],[0.3,0.4]) ([0.0,0.1],[0.8,0.9]) ([0.3,0.4],[0.5,0.6]) ([1.0,1.0],[0.0,0.0]) ([0.2,0.3],[0.6,0.7]) ([0.4,0.5],[0.4,0.5]) ([0.7,0.8],[0.1,0.2]) ([0.4,0.5],[0.4,0.5])

R2 ([0.5,0.6],[0.3,0.4]) ([0.6,0.7],[0.1,0.2]) ([1.0,1.0],[0.0,0.0]) ([0.1,0.2],[0.6,0.7]) ([0.0,0.1],[0.8,0.9]) ([0.7,0.8],[0.1,0.2]) ([0.5,0.6],[0.3,0.4]) ([0.6,0.7],[0.2,0.3]) ([1.0,1.0],[0.0,0.0]) ([0.1,0.2],[0.7,0.8]) ([0.0,0.1],[0.8,0.9]) ([0.7,0.8],[0.1,0.2])

R3 ([0.4,0.5],[0.3,0.4]) ([0.6,0.7],[0.2,0.3]) ([0.9,1.0],[0.0,0.0]) ([0.0,0.1],[0.8,0.9]) ([0.0,0.1],[0.8,0.9]) ([0.6,0.7],[0.2,0.3]) ([0.1,0.2],[0.7,0.8]) ([0.2,0.3],[0.6,0.7]) ([0.5,0.6],[0.2,0.4]) ([1.0,1.0],[0.0,0.0]) ([0.3,0.4],[0.4,0.5]) ([0.0,0.1],[0.8,0.9])

R4 ([1.0,1.0],[0.0,0.0]) ([1.0,1.0],[0.0,0.0]) ([0.8,0.9],[0.0,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.0,0.1],[0.7,0.9]) ([0.0,0.1],[0.8,0.9]) ([0.1,0.2],[0.7,0.8]) ([0.1,0.2],[0.7,0.8]) ([0.4,0.5],[0.3,0.4]) ([1.0,1.0],[0.0,0.0]) ([0.3,0.4],[0.4,0.5]) ([0.0,0.1],[0.8,0.9])

T ([0.9,1.0],[0.0,0.0]) ([0.9,1.0],[0.0,0.0]) ([0.7,0.8],[0.1,0.2]) ([0.6,0.7],[0.1,0.2]) ([0.0,0.1],[0.8,0.9]) ([0.1,0.2],[0.7,0.8]) ([0.1,0.2],[0.7,0.8]) ([0.1,0.2],[0.7,0.8]) ([0.4,0.5],[0.3,0.4]) ([1.0,1.0],[0.0,0.0]) ([0.3,0.4],[0.4,0.5]) ([0.0,0.1],[0.7,0.9])
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Fig. 4. Recognition results of PR problem
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Fig. 5. Comparison graph of various similarity measures to PR problem

5.2. Application for MD

Medical diagnosis is the process of determining the cause of a person’s symptoms or condition
by analyzing their medical history, conducting physical examinations, and using diagnostic tests such
as blood tests or imaging scans. It helps doctors identify and treat illnesses or diseases effectively.

Researchers have explored numerous approaches to tackle medical diagnosis problems, looking
at them from various angles. In this particular approach, they have used pattern recognition algo-
rithms. In this method, patients are treated like unknown test cases, diseases are treated as distinct
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Table 5. PR outcomes using various SMs

S(R1, T ) S(R2, T ) S(R3, T ) S(R4, T ) Recognition results
S1 [50] 0.59 0.58 0.81 0.97 R4

S2 [50] 0.53 0.53 0.79 0.94 R4

SW [49] 0.48 0.47 0.74 0.94 R4

SD [48] 0.64 0.56 0.83 0.98 R4

SL [47] 0.60 0.58 0.85 0.97 R4

SC [22] 0.69 0.65 0.83 0.97 R4

SPP 0.80 0.78 0.92 0.99 R4

patterns, and the set of symptoms serves as the set universe of discourse. The primary purpose is to
classify patients and determine which disorder they might have.

Example 5.3. Let X = {x1(temperature), x2(cough), x3(headache), x4(stomach pain)} represent a
set of symptoms, and let R = {R1, R2, R3, R4} denote a set of diagnoses, where R1= viral fever,
R2= typhoid, R3= pneumonia, and R4= stomach problem. Then the disease-symptom matrix with an
IV IFS representation is listed in Table 6. Suppose a patient T , with respect to all the symptoms, can
be represented by the following IV IF information.

T={(x1,[0.4,0.5],[0.1,0.2]),(x2,[0.7,0.8],[0.1,0.2]),(x3,[0.9,0.9],[0,0.1]),(x4,[0.3,0.5],[0.2,0.4])}.

Table 6. Symptom- disease relationship matrix

x1 x2 x3 x4

R1 ([0.8,0.9],[0.0,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.5,0.6],[0.2,0.3]) ([0.6,0.8],[0.1,0.2])
R2 ([0.5,0.6],[0.1,0.3]) ([0.8,0.9],[0.0,0.1]) ([0.6,0.8],[0.1,0.2]) ([0.4,0.6],[0.1,0.2])
R3 ([0.7,0.8],[0.1,0.2]) ([0.7,0.9],[0.0,0.1]) ([0.4,0.6],[0.2,0.4]) ([0.3,0.5],[0.2,0.4])
R4 ([0.8,0.9],[0.0,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.7,0.9],[0.0,0.1]) ([0.8,0.9],[0.0,0.1])

Our main objective is to identify if patient T has any of the diseases R1, R2, R3 and R4. We
will use IV IFS’s, and we can see the expected results indicated in Table 7. These results are also
presented graphically in Fig. 6.
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Fig. 6. Recognition results of medical diagnosis problem

Using the “maximum similarity principle,”we can observe that SPP (R2, T ) appears to be the
highest. However, the SM S2 could not clearly distinguish between R1 and R4. So, following
the “recognition principle,” we can say that patient T has typhoid. Finally, the performance of the
suggested measure is shown in the previously described Table 7 and Figs. 6 and 7.

5.3. MCDM Problems

The process of finding and selecting choices based on the decision maker’s values and prefer-
ences is known as decision making. The decision-making process is the selection of the best choice

Sangeetha Palanisamy (Interval-Valued Intuitionistic Fuzzy Cosine Similarity Measures for Real World Problem Solving)



670 International Journal of Robotics and Control Systems
Vol. 4, No. 2, 2024, pp. 655-677

ISSN 2775-2658

Table 7. Computed values under different SMs

S (R1, T ) S (R2, T ) S (R3, T ) S (R4, T ) Recognition results
S1 [50] 0.81 0.89 0.86 0.84 R2

S2 [50] 0.73 0.80 0.78 0.73 R2

SW [49] 0.82 0.80 0.79 0.77 R2

SD [48] 0.82 0.91 0.86 0.84 R2

SL [47] 0.83 0.89 0.87 0.85 R2

SC [22] 0.93 0.97 0.96 0.94 R2

SPP 0.95 0.98 0.97 0.96 R2
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Fig. 7. Comparison graph of various SMs to medical diagnosis problem

from suitable alternatives. The proposed SM can be utilized to assess the similarity between al-
ternatives described by IV IFS’s in different criteria dimensions. This can assist decision-makers
in ranking or selecting the most suitable alternatives in complex decision-making scenarios where
uncertainty and imprecision are prevalent.

5.3.1. Optimizing Decisions: An Advanced MCDM Algorithm

In this subsection, we introduce a SM designed to address MCDM problems. We have a set
of alternatives represented as B = {B1, B2, · · · , Bm}, and a set of criteria represented as C =
{C1, C2, · · · , Cn}. Each alternative Bi for a criteria C is represented using IV IFS as given:

Bi =
{
(Cj , [µ

−
ij , µ

+
ij ], [ν

−
ij , ν

+
ij ]) : Cj ∈ C

}
, i = 1, 2, · · · ,m.

With the help of the recommended measure 7, we are going to lay out an algorithm for solving MCDM
problems.

Step 1: Establish the both positive (B+) and negative (B−) ideal solutions as follows:

B+ = {([µ−
1+, µ

+
1+], [ν

−
1+, ν

+
1+]), ([µ

−
2+, µ

+
2+], [ν

−
2+, ν

+
2+]), · · · ([µ

−
n+, µ

+
n+], [ν

−
n+, ν

+
n+])}

B− = {([µ−
1−, µ

+
1−], [ν

−
1−, ν

+
1−]), ([µ

−
2−, µ

+
2−], [ν

−
2−, ν

+
2−]), · · · ([µ

−
n−, µ

+
n−], [ν

−
n−, ν

+
n−])}

Here,

([µ−
j+, µ

+
j+], [ν

−
j+, ν

+
j+]) = ([maxi µ

−
ij ,maxi µ

+
ij ], [mini ν

−
ij ,mini ν

+
ij ]),

([µ−
j−, µ

+
j−], [ν

−
j−, ν

+
j−]) = ([mini µ

−
ij ,mini µ

+
ij ], [maxi ν

−
ij ,maxi ν

+
ij ]),

where j = 1, 2, · · · , n.
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Step 2: Use the following formula to calculate the degree of similarity for both positive S(Bi, B
+)

and negative S(Bi, B
−) ideal solutions as follows :

S(Bi, B
+) =

1

3
(S1

PP (Bi, B
+) + S2

PP (Bi, B
+) + S3

PP (Bi, B
+)) (8)

S(Bi, B
−) =

1

3
(S1

PP (Bi, B
−) + S2

PP (Bi, B
−) + S3

PP (Bi, B
−)) (9)

Step 3: Apply Eqs. (8) - (9) to determine S(Bi), the relative SM of Bi in regard to B+ and B−:

S(Bi) =
S(Bi, B

+)

S(Bi, B−) + S(Bi, B+)
, (i = 1, 2, · · · , n). (10)

Step 4: Choose the highest degree of similarity S(Bt) from the set of S(Bi) where i equals to
1, 2, · · · , n. In conclusion, S(Bt) is the optimal choice.

5.3.2. MCDM Application

Example 5.4. A company needs to choose a distributor for their product. They are looking at six
evaluation criteria: price (H1), deadline (H2), quality (H3), level of technology (H4), service (H5),
and the potential for future cooperation (H6). They have five distributors to choose from, labeled Bi

(i = 1, 2, 3, 4, 5). Experts [49] have analyzed these suppliers using the criteria mentioned above, and
here are the results they found in Table 8:

Table 8. Results of distributor

H1 H2 H3 H4 H5 H6

B1 ([0.4,0.5],[0.2,0.3]) ([0.6,0.8],[0.1,0.2]) ([0.4,0.5],[0.2,0.4]) ([0.8,0.9],[0.1,0.1]) ([0.2,0.6],[0.2,0.3]) ([0.5,0.7][0.1,0.2])

B2 ([0.5,0.7],[0.1,0.2]) ([0.6,0.8],[0.1,0.2]) ([0.3,0.4],[0.4,0.6]) ([0.8,0.9],[0.0,0.1]) ([0.2,0.5],[0.3,0.4]) ([0.1,0.2][0.4,0.5])

B3 ([0.2,0.3],[0.6,0.7]) ([0.4,0.5],[0.3,0.4]) ( [0.7,0.8],[0.1,0.2]) ([0.2,0.5],[0.1,0.2]) ([0.7,0.8],[0.0,0.1]) ([0.5,0.6][0.2,0.4])

B4 ([0.5,0.6],[0.1,0.2]) ([0.3,0.4],[0.2,0.3]) ([0.5,0.8],[0.1,0.2]) ([0.6,0.7],[0.1,0.2]) ([0.3,0.4],[0.3,0.4]) ([0.1,0.2][0.7,0.8])

B5 ([0.4,0.5],[0.3,0.4]) ([0.8,0.9],[0.0,0.1]) ([0.6,0.8],[0.1,0.2]) ([0.8,0.9],[0.0,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.5,0.6][0.1,0.2])

Using the preceding step 1, we obtain both the positive ideal solution B+ and the negative ideal
solution B−, as shown in Table 9:

Table 9. The positive ideal solution B+ and the negative ideal solution B−

H1 H2 H3 H4 H5 H6

B+ ([0.5,0.7],[0.1,0.2]) ([0.8,0.9],[0.0,0.1]) ([0.7,0.8],[0.1,0.2]) ([0.8,0.9],[0.0,0.1]) ([0.7,0.8],[0.0,0.1]) ([0.5,0.7][0.1,0.2])

B− ([0.2,0.3],[0.6,0.7]) ([0.3,0.4],[0.3,0.4]) ([0.3,0.4],[0.4,0.6]) ([0.2,0.5],[0.1,0.2]) ([0.2,0.4],[0.3,0.4]) ([0.1,0.2][0.7,0.8])

We have used equations (8) - (9) to calculate SMs and decision outcomes, and you can see
the results in Table 10 for comparison. We have also represented these findings graphically in Fig. 8.
Notably, in Table 10, some rankings have stayed consistent, with B5 emerging as the top choice. This
highlights the effectiveness of our decision-making process using the recommended SM . Further-
more, most of the rankings in Table 10 closely resemble those seen in the specific example using
IV IFS . However, it’s important to note that the way we rank using the suggested MCDM approach
with IV IFS SMs in Table 10 differs from some of those depending on the MCDM method with
IV IFS SMs in the same table. Therefore, its impact on the ranking of alternatives underscores its
importance in the proposed MCDM applications.

While many advanced decision-making methods [47] - [50] in IV IFS settings haven’t addressed
MCDM issues with IV IFS data, these approaches lack the use of complementary and middle terms
for MF and NMF degrees, which are important factors. However, as shown in Table 10 and Fig. 8,
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Table 10. Ranking results

Measure value Ranking The best one
S1 [50] 0.57, 0.49, 0.50, 0.45, 0.66 S(B1) > S(B2) < S(B3) > S(B4) < S(B5) B5

S2 [50] 0.52, 0.50, 0.49, 0.48, 0.56 S(B1) > S(B2) > S(B3) > S(B4) < S(B5) B5

SW [49] 0.55, 0.46, 0.53, 0.48, 0.64 S(B1) > S(B2) < S(B3) > S(B4) < S(B5) B5

SD [48] 0.54, 0.50, 0.49, 0.48, 0.58 S(B1) > S(B2) > S(B3) > S(B4) < S(B5) B5

SL [47] 0.50, 0.49, 0.50, 0.49, 0.50 S(B1) > S(B2) < S(B3) > S(B4) < S(B5) B5

SC [22] 0.54, 0.48, 0.51, 0.48, 0.56 S(B1) > S(B2) < S(B3) > S(B4) < S(B5) B5

SPP 0.53, 0.50, 0.51, 0.49, 0.54 S(B1) > S(B2) < S(B3) > S(B4) < S(B5) B5

our proposed MCDM framework using IV IFS SMs can be effectively applied to MCDM prob-
lems with IV IFS data. This enhances the decision results more valuable and realistic for practical
decision-making.
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Fig. 8. Ranking results of MCDM problem

5.3.3. Results and Discussion

Certain similarity measures perform better in specific scenarios due to the reasons are the per-
formance of provides the characteristics of the data, the requirements of the problem at hand, and
the suitability of different measures for practical applications. These insights can guide algorithm de-
sign, model selection, and decision-making processes, ultimately leading to more effective solutions
in real-world settings. Pattern recognition results can enhance real-world classification tasks by ac-
curately identifying patterns in data, leading to improved decision-making and automation in various
domains such as image recognition and fraud detection. Medical diagnosis can enhance healthcare
decision-making by enabling more accurate diagnoses and personalized treatment plans, ultimately
improving patient outcomes and resource allocation within healthcare systems.

Previous studies [47], [23], [22] did not consider the middle and boundary points of intervals
in their methods. However, our proposed similarity measure includes these points and adheres to
established definitions. Our measure consistently outperforms other advanced techniques, as shown
in Table 1. By following the principle of “maximum similarity,”our measure consistently ranks the
highest. While existing methods in IV IFS settings [22], [48] - [50] haven’t effectively addressed
MCDM problems with IV IFS data, they overlook crucial factors like complementary and middle
terms. Our proposed MCDM framework, as depicted in Table 10 and Fig. 8, successfully applies
IV IFS similarity measures to MCDM issues, resulting in more realistic decision outcomes. Based
on these findings, we can state that our similarity measure outperforms others, making it a more
reasonable choice for decision-making tasks.
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5.3.4. Advantages of the Suggested Approach

The advantages of utilizing an IVIFS-based SM include the following typical benefits:

• The utilization of IV IFS enhances the reliability assessment of MF and NMF degree inter-
vals, thereby making the IFS more trustworthy. Consequently, the suggested IV IFS incorpo-
rates a significantly greater amount of valuable information compared to traditional IFS .

• This work solves MCDM problems, PR, and medical diagnosis using the suggested IV IFS

SM , which improves medical, pattern, and decision-making outcomes and outperforms exist-
ing IV IFS-based SMs.

• One advantage of employing this method is its apparent simplicity in calculating the similarity
level. Additionally, the merits of this research encompass a greater resemblance to real-world
scenarios.

• Furthermore, the core advantage of this approach lies in its utilization of MF , NMF , middle,
and complement degrees for determining similarity. Consequently, our proposed method may
offer greater accuracy compared to existing advanced procedures.

6. Conclusion and Future Directions

In this research, we have created an innovative method for assessing the similarity of IV IFS’s.
Building upon an existing CSM , our study has introduced a novel IVIFCSM, highlighting its essential
characteristics. Furthermore, we have successfully applied this newly established SM to address a
diverse range of real-world challenges, including PR, medical diagnosis, and MCDM. To illustrate
the practicality of our approach, we have provided numerical examples showcasing its application in
each context. Notably, our proposed technique yields higher similarity values in all these applications
compared to other SMs, aligning with the maximum similarity principle and thus providing more
informative results.

However, it’s worth noting that the proposed method does come with certain limitations. Specifi-
cally, the suggested SM is applicable in scenarios where degrees of MF and NMF can be expressed
as numerical values with intervals. Nevertheless, in many real-world situations, linguistic variables
are utilized to convey qualitative information. Regrettably, this particular SM is not suitable for ap-
plication in a linguistic context. Therefore, further investigation is necessary to explore the adaptation
of this SM to accommodate linguistic IVIF information.

In future research, exploring advanced approaches like probabilities, power averages, and mov-
ing averages could help overcome these limitations. Probabilistic methods can capture the uncertainty
inherent in linguistic information by assigning probabilities to different linguistic terms. Power aver-
ages and moving averages offer alternative ways to aggregate linguistic IVIF information, allowing
for more nuanced comparisons and decision-making. By integrating these advanced techniques, it
may be possible to develop SMs that are more suitable for handling linguistic IVIF information in
real-world applications.

These methods could be applied to various fields such as medical imaging, social network and
large-scale decision-making, and consensus building. Consensus measures, in particular, are crucial
in group decision-making, as specialists need to agree on a solution. We will also work on developing
consensus measures based on our proposed SM and applying them to tackle challenges in social net-
work and large-scale decision-making in uncertain situations. Building on previous research, we are
excited to use our measure to address consensus-related issues in group decision-making involving
IV IFS’s [51], [52]. Further, we plan to implement the systematic approach outlined for develop-
ing an AI-powered windshield crack detection system. By following the steps of data collection,
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preprocessing, model selection, training, evaluation, deployment, user interface design, testing, opti-
mization, and maintenance, we aim to create a robust and reliable system that enhances automotive
safety and maintenance. Additionally, we intend to explore the adaptation of similar methodologies
to accommodate linguistic IVIF information, leveraging advanced techniques such as probabilities,
power averages, and moving averages to improve similarity measures and address real-world chal-
lenges effectively.
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[14] S. Fang, P. Zhou, H. Dinçer, and S. Yuksel, “Assessment of safety management system on energy invest-
ment risk using house of quality based on hybrid stochastic interval-valued intuitionistic fuzzy decision-
making approach,” Safety Science, vol. 141, no. 15, 2021, https://doi.org/10.1016/j.ssci.2021.105333.

[15] S. Li, J. Yang, G. Wang, and T. Xu, “Multi-granularity distance measure for interval-valued intuitionistic
fuzzy concepts,” Information Sciences, vol. 570, pp. 599-622, 2021, https://doi.org/10.1016/j.ins.2021.
05.003.

[16] M. Afzali, and K. Suresh, “Comparative analysis of various similarity measures for finding similarity of
two documents,” International Journal of Database Theory and Application, vol. 10, no. 2, pp. 23-30,
2017, http://dx.doi.org/10.14257/ijdta.2017.10.2.02.

[17] W. H. Gomaa, and A. A. Fahmy, “A survey of text similarity approaches,” International journal of Com-
puter Applications, vol. 68, no. 13, pp. 13-18, 2013, https://doi.org/10.5120/11638-7118.

[18] A. Bhattacharya, “On a measure of divergence of two multinominal populations Sankhya,” Indian Journal
of Statistics, vol. 7, pp. 401-406, 1946, https://www.jstor.org/stable/25047882.

[19] G. Salton, and M. J. McGill, “Introduction to modern information retrieval,” McGraw-Hill Book Com-
pany, New York, 1983, https://cir.nii.ac.jp/crid/1574231873785747328.

[20] W. Guo, L. Bi, B. Hu, and S. Dai, “Cosine similarity measure of complex fuzzy sets and robustness of
complex fuzzy connectives,” Mathematical Problems in Engineering, vol. 2020, 2020, https://doi.org/10.
1155/2020/6716819.

[21] J. Ye, “Cosine similarity measures for intuitionistic fuzzy sets and their applications,” Mathematical and
computer modelling, vol. 53, no.1-2, pp. 91-97, 2011, https://doi.org/10.1016/j.mcm.2010.07.022.

[22] P. Singh, “A new method on measure of similarity between interval-valued intuitionistic fuzzy sets for
pattern recognition,” Journal of Applied & computational mathematics, vol. 1, no.1, pp. 1-5, 2012,
http://dx.doi.org/10.4172/2168-9679.1000101.

[23] J. Ye, “Interval-valued intuitionistic fuzzy cosine similarity measures for multiple attribute decision-
making,” International Journal of General Systems, vol. 42, no. 8, pp. 883-891, 2013, https://doi.org/
10.1080/03081079.2013.816696.

[24] D. Liu, X. Chen,and D. Peng, “Interval-valued intuitionistic fuzzy ordered weighted cosine similarity
measure and its application in investment decision-making,” Complexity, 2017, https://doi.org/10.1155/
2017/1891923.

[25] Harish G, “An improved cosine similarity measure for intuitionistic fuzzy sets and their applications to
decision-making process,” Hacettepe Journal of Mathematics and Statistics, vol. 47, no. 6, pp. 1578-1594,
2018, http://dx.doi.org/10.15672/HJMS.2017.510.

[26] P. Purwono, A. Ma’arif, W. Rahmaniar, H. I. K. Fathurrahman, A. Z. K. Frisky, and Q. M. U. Haq,
“Understanding of convolutional neural network (cnn): A review,” International Journal of Robotics and
Control Systems, vol. 2, no. 4, pp. 739-748, 2022, http://dx.doi.org/10.31763/ijrcs.v2i4.888.

[27] P. Rathnasabapathy, and D. Palanisami, “A theoretical development of improved cosine similarity measure
for interval valued intuitionistic fuzzy sets and its applications,” Journal of Ambient Intelligence and
Humanized Computing, vol. 14, pp. 16575-16587, 2023, https://doi.org/10.1007/s12652-022-04019-0.

[28] J. S. Saputro, H. Maghfiroh, F. Adriyanto, M. R. Darmawan, M. H. Ibrahim, and S. Pramono, “En-
ergy Monitoring and control of automatic transfer switch between grid and solar panel for home sys-
tem,” International Journal of Robotics and Control Systems, vol. 3, no. 1, pp. 59-73, 2023, https:
//doi.org/10.31763/ijrcs.v3i1.843.

[29] R. Verma, and J. M. Merigo, “A new decision making method using interval-valued intuitionistic fuzzy
cosine similarity measure based on the weighted reduced intuitionistic fuzzy sets,” Informatica, vol. 31,
no. 2, pp. 399-433, 2020, https://doi.org/10.15388/20-INFOR405.

[30] R. Zhang, Z. Xu, and X. Gou, “ELECTRE II method based on the cosine similarity to evaluate the
performance of financial logistics enterprises under double hierarchy hesitant fuzzy linguistic environ-
ment,” Fuzzy Optimization and Decision Making, vol. 22, no. 1, pp. 23-49, 2023, https://doi.org/10.1007/
s10700-022-09382-3.

Sangeetha Palanisamy (Interval-Valued Intuitionistic Fuzzy Cosine Similarity Measures for Real World Problem Solving)

https://doi.org/10.1016/j.asoc.2021.107539
https://doi.org/10.1016/j.asoc.2021.107539
https://doi.org/10.1016/j.ssci.2021.105333
https://doi.org/10.1016/j.ins.2021.05.003
https://doi.org/10.1016/j.ins.2021.05.003
http://dx.doi.org/10.14257/ijdta.2017.10.2.02
https://doi.org/10.5120/11638-7118
https://www.jstor.org/stable/25047882
https://cir.nii.ac.jp/crid/1574231873785747328
https://doi.org/10.1155/2020/6716819
https://doi.org/10.1155/2020/6716819
https://doi.org/10.1016/j.mcm.2010.07.022
http://dx.doi.org/10.4172/2168-9679.1000101
https://doi.org/10.1080/03081079.2013.816696
https://doi.org/10.1080/03081079.2013.816696
https://doi.org/10.1155/2017/1891923
https://doi.org/10.1155/2017/1891923
http://dx.doi.org/10.15672/HJMS.2017.510
http://dx.doi.org/10.31763/ijrcs.v2i4.888
https://doi.org/10.1007/s12652-022-04019-0
https://doi.org/10.31763/ijrcs.v3i1.843
https://doi.org/10.31763/ijrcs.v3i1.843
https://doi.org/10.15388/20-INFOR405
https://doi.org/10.1007/s10700-022-09382-3
https://doi.org/10.1007/s10700-022-09382-3


676 International Journal of Robotics and Control Systems
Vol. 4, No. 2, 2024, pp. 655-677

ISSN 2775-2658

[31] S. Singh, and A. H. Ganie, “Applications of picture fuzzy similarity measures in pattern recognition,
clustering, and MADM,” Expert Systems with Applications, vol. 168, 2021, https://doi.org/10.1016/j.
eswa.2020.114264.

[32] B. Noorulden, and A. Ma’arif, “NB theory with bargaining problem: a new theory,” International Journal
of Robotics and Control Systems, vol. 2, no. 3, pp. 606-609, 2022, http://dx.doi.org/10.31763/ijrcs.v2i3.
798.

[33] J. S. Chai, G. Selvachandran, F. Smarandache, V. C. Gerogiannis, L. H. Son, Q. T. Bui, and B. Vo,
“New similarity measures for single-valued neutrosophic sets with applications in pattern recognition
and medical diagnosis problems,” Complex & Intelligent Systems, vol. 7, pp. 703-723, 2021, https:
//doi.org/10.1007/s40747-020-00220-w.

[34] N. X. Thao, and S. Y. Chou, “Novel similarity measures, entropy of intuitionistic fuzzy sets and their
application in software quality evaluation,” Soft Computing, vol. 26, pp. 2009-2020, 2022, https://doi.
org/10.1007/s00500-021-06373-1.

[35] A. R. Mishra, A. Chandel, and P. Saeidi, “Low-carbon tourism strategy evaluation and selection us-
ing interval-valued intuitionistic fuzzy additive ratio assessment approach based on similarity mea-
sures,” Environment, Development and Sustainability, vol. 24, no. 5, pp. 7236-7282, 2022, https:
//doi.org/10.1007/s10668-021-01746-w.

[36] W. H. Lee, J. H. Tsai, and L. C. Lee, “A new multiple criteria decision making approach based on in-
tuitionistic fuzzy sets, the weighted similarity measure, and the extended TOPSIS method,” Journal of
Internet Technology, vol. 22, no. 3, pp. 645-656, 2021, https://jit.ndhu.edu.tw/article/view/2521.

[37] H. Garg, and D. Rani, “Novel similarity measure based on the transformed right-angled triangles between
intuitionistic fuzzy sets and its applications,” Cognitive Computation, vol. 13, no. 1, pp. 447-465, 2021,
https://doi.org/10.1007/s12559-020-09809-2.

[38] E. Salajegheh, S. Mojalal, and A. M. Ghahfarokhi, “Treatment of Bone Marrow Cancer Based on Model
Predictive Control,” International Journal of Robotics and Control Systems, vol. 1, no. 4, pp. 463-476,
2021, https://doi.org/10.31763/ijrcs.v1i4.481.

[39] A. Singh, and S. Kumar, “A novel dice similarity measure for IFSs and its applications in pattern and
face recognition,” Expert Systems with Applications, vol. 149, 2020, https://doi.org/10.1016/j.eswa.2020.
113245.

[40] Y. Donyatalab, F. K. Gundogdu, F. Farid, S. A. S. Shishavan, E. Farrokhizadeh, and C. Kahraman, “Novel
spherical fuzzy distance and similarity measures and their applications to medical diagnosis,” Expert
Systems with Applications, vol. 191, pp. 116330, 2022, https://doi.org/10.1016/j.eswa.2021.116330.

[41] A. Mousavi, A. H. Sadeghi, A. M. Ghahfarokhi, F. Beheshtinejad, and M. M. Masouleh, “Improving the
Recognition Percentage of the Identity Check System by Applying the SVM Method on the Face Image
Using Special Faces,” International Journal of Robotics and Control Systems, vol. 3, no. 2, pp. 221-232,
2023, https://doi.org/10.31763/ijrcs.v3i2.939.

[42] A. Mousavi, H. Arefanjazi, M. Sadeghi, A. M. Ghahfarokhi, F. Beheshtinejad and M. M. Masouleh,
“Comparison of feature extraction with PCA and LTP methods and investigating the effect of dimension-
ality reduction in the bat algorithm for face recognition,” International Journal of Robotics and Control
Systems, vol. 3, no. 3, pp. 501-509, 2023, http://dx.doi.org/10.31763/ijrcs.v3i3.1057.

[43] J. K. Gunn, H. A. Khorshidi, and U. Aickelin, “Similarity measure for aggregated fuzzy numbers from
interval-valued data,” Soft Computing Letters, vol. 2, pp. 100002, 2020, https://doi.org/10.1016/j.socl.
2020.100002.

[44] K. Ullah, T. Mahmood, and N. Jan, “Similarity measures for T-spherical fuzzy sets with applications in
pattern recognition,” Symmetry, vol. 10, no. 6, pp. 1-14, 2018, https://doi.org/10.3390/sym10060193.

[45] P. Wang, J. Wang, G. Wei, and C. Wei, “Similarity measures of q-rung orthopair fuzzy sets based on
cosine function and their applications,” Mathematics, vol. 7, no. 4, pp. 1-23, 2019, https://doi.org/10.
3390/math7040340.

[46] S. Singh, and A. H. Ganie, “Applications of picture fuzzy similarity measures in pattern recognition,
clustering, and MADM,” Expert Systems with Applications, vol. 168, 2021, https://doi.org/10.1016/j.
eswa.2020.114264.

[47] M. Luo, and J. liang, “A novel similarity measure for interval-valued intuitionistic fuzzy sets and its
applications,” Symmetry, vol. 10, no. 10, pp. 1-13, 2018, https://doi.org/10.3390/sym10100441.

Sangeetha Palanisamy (Interval-Valued Intuitionistic Fuzzy Cosine Similarity Measures for Real World Problem Solving)

https://doi.org/10.1016/j.eswa.2020.114264
https://doi.org/10.1016/j.eswa.2020.114264
 http://dx.doi.org/10.31763/ijrcs.v2i3.798
 http://dx.doi.org/10.31763/ijrcs.v2i3.798
https://doi.org/10.1007/s40747-020-00220-w
https://doi.org/10.1007/s40747-020-00220-w
https://doi.org/10.1007/s00500-021-06373-1
https://doi.org/10.1007/s00500-021-06373-1
https://doi.org/10.1007/s10668-021-01746-w
https://doi.org/10.1007/s10668-021-01746-w
https://jit.ndhu.edu.tw/article/view/2521
https://doi.org/10.1007/s12559-020-09809-2
 https://doi.org/10.31763/ijrcs.v1i4.481
https://doi.org/10.1016/j.eswa.2020.113245
https://doi.org/10.1016/j.eswa.2020.113245
https://doi.org/10.1016/j.eswa.2021.116330
https://doi.org/10.31763/ijrcs.v3i2.939
http://dx.doi.org/10.31763/ijrcs.v3i3.1057
https://doi.org/10.1016/j.socl.2020.100002
https://doi.org/10.1016/j.socl.2020.100002
https://doi.org/10.3390/sym10060193
https://doi.org/10.3390/math7040340
https://doi.org/10.3390/math7040340
https://doi.org/10.1016/j.eswa.2020.114264
https://doi.org/10.1016/j.eswa.2020.114264
https://doi.org/10.3390/sym10100441


ISSN 2775-2658 International Journal of Robotics and Control Systems
Vol. 4, No. 2, 2024, pp. 655-677

677

[48] J. Dhivya, and B. Sridevi, “A novel similarity measure between intuitionistic fuzzy sets based on the
mid points of transformed triangular fuzzy numbers with applications to pattern recognition and medical
diagnosis,” Applied Mathematics-A Journal of Chinese Universities, vol. 34, pp. 229-252, 2019, https:
//doi.org/10.1007/s11766-019-3708-x.

[49] Wei C, Wang P, & Zang Y, “Entropy, similarity measure of interval valued intuitionistic fuzzy sets and
their applications,” Information Sciences, vol. 181, no. 19, pp. 4273–4286, 2011, https://doi.org/10.1016/
j.ins.2011.06.001.

[50] Z. S. Xu, and J. Chen, “An overview of distance and similarity measures of intuitionistic fuzzy sets,” In-
ternational Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 16, no. 4, pp. 529-555,
2008, https://doi.org/10.1142/S0218488508005406.

[51] P. Liu, K. Zhang, P. Wang, and F. Wang, “A clustering-and maximum consensus-based model for social
network large-scale group decision making with linguistic distribution,” Information Sciences, vol. 602,
pp. 269-297, 2022, https://doi.org/10.1016/j.ins.2022.04.038.

[52] S. Wang, J. Wu, F. Chiclana, Q. Sun and E. Herrera-Viedma, “Two-Stage Feedback Mechanism With
Different Power Structures for Consensus in Large-Scale Group Decision Making,” in IEEE Transactions
on Fuzzy Systems, vol. 30, no. 10, pp. 4177-4189, 2022, https://doi.org/10.1109/TFUZZ.2022.3144536.

Sangeetha Palanisamy (Interval-Valued Intuitionistic Fuzzy Cosine Similarity Measures for Real World Problem Solving)

https://doi.org/10.1007/s11766-019-3708-x.
https://doi.org/10.1007/s11766-019-3708-x.
https://doi.org/10.1016/j.ins.2011.06.001
https://doi.org/10.1016/j.ins.2011.06.001
https://doi.org/10.1142/S0218488508005406
https://doi.org/10.1016/j.ins.2022.04.038
https://doi.org/10.1109/TFUZZ.2022.3144536

	Introduction
	Similarity Measures
	Cosine Similarity Measures
	Literature Review
	Research Objectives of this Study
	Goal and Contribution of the Study
	Structure of the Article


	Preliminaries
	An Overview of Existing Similarity Measures 
	Development of New Similarity Measure
	Applications
	Applications for PR
	Procedure for PR
	Ore Classification in a Coal Mining Area

	Application for MD
	MCDM Problems
	Optimizing Decisions: An Advanced MCDM Algorithm
	MCDM Application
	Results and Discussion
	Advantages of the Suggested Approach


	Conclusion and Future Directions

