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1. Introduction  

The field of epidemiology, which focuses on the patterns and dynamics of diseases within 

populations, plays a crucial role in comprehending and tackling infectious diseases. This field has 

become increasingly essential as new theories and explanations for epidemics emerge [1]. Since the 

emergence of COVID-19 in early 2020, the world has faced an unprecedented challenge characterized 

by an atypical pneumonia outbreak. COVID-19 not only poses a significant threat to public health but 

also exerts substantial economic pressure worldwide. The complexities of diagnosing and treating 

COVID-19 present formidable challenges for healthcare professionals. The foundation of modern 

epidemiological modeling traces back to the pioneering work of Kermack and McKendrick, who 

introduced compartmental epidemic models, including the Susceptible-Infection-Recovery (SIR) and 
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 Developing effective strategies to contain the spread of infectious diseases, 

particularly in the case of rapidly evolving outbreaks like COVID-19, 

remains a pressing challenge. The Susceptible-Infected-Recovery (SIR) 

model, a fundamental tool in epidemiology, offers insights into disease 

dynamics. The SIR system exhibits complex nonlinear relationships 

between the input variables (e.g., population, infection rate, recovery rate) 

and the output variables (e.g., the number of infected individuals over 

time). We employ Recurrent Neural Networks (RNNs) to model the SIR 

system due to their ability to capture sequential dependencies and handle 

time-series data effectively. RNNs, with their ability to model nonlinear 

functions, can capture these intricate relationships, enabling accurate 

predictions and understanding of the dynamics of the system. Additionally, 

we apply the Pontryagin Minimum Principle (PMP) based different control 

strategies to formulate an optimal control approach aimed at maximizing 

the recovery rate while minimizing the number of affected individuals and 

achieving a balance between minimizing costs and satisfying constraints. 

This can include optimizing vaccination strategies, quarantine measures, 

treatment allocation, and resource allocation. The findings of this research 

indicate that the proposed modeling and control approach shows potential 

for a comprehensive analysis of viral spread, providing valuable insights 

and strategies for disease management on a global level. By integrating 

epidemiological modeling with intelligent control techniques, we 

contribute to the ongoing efforts aimed at combating infectious diseases on 

a larger scale. 
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Susceptible-Exposed-Infectious-Recovery (SEIR) models [2]. The SIR model, particularly suited for 

simulating diseases that confer lifelong immunity post-recovery, remains a primary choice in 

infectious disease modeling [3]. In the realm of parameter identification for epidemic models, 

traditional computation offers two primary approaches: least squares-based methods [4] and gradient-

based methods [5]. While these methods have proven effective in various applications, they are not 

without limitations. Least squares methods struggle with time-variant parameters, while gradient-

based methods often require heuristic gain adjustments to achieve convergence. Recognizing these 

limitations is crucial when selecting parameter identification strategies, as alternative methods may 

be necessary to ensure accuracy, especially when dealing with dynamic parameters or convergence 

challenges [6]. Artificial Neural Networks (ANNs) emerge as valuable tools for enhancing the 

diagnosis of COVID-19. ANNs offer the potential to improve diagnostic accuracy and speed, 

facilitating timely screening, treatment, and vigilant monitoring. This study leverages Recurrent 

Neural Networks (RNNs) to propose an estimation method for epidemic models, benefiting from the 

network's optimization capabilities. Notably, RNNs eliminate the need for heuristic gain adjustments, 

drawing inspiration from gradient-based approaches. Previous applications of this neural network 

estimation technique have yielded promising results in other domains, such as robotics [7]. 

Preliminary investigations with real data have also shown promise [8]-[9]. Our primary objective is 

to present an efficient and versatile neural network-based approach for elucidating human control 

strategies within epidemic disease models. We seek a neural network architecture capable of modeling 

dynamic SIR systems effectively [10]. Furthermore, optimal control theory offers a robust 

mathematical framework for effectively managing and mitigating the spread of a wide range of 

diseases. Optimal control involves determining the best trajectory for a dynamic system through time, 

considering state and input controls, to minimize or maximize a performance index [11]-[12]. The 

Pontryagin Minimum Principle (PMP), a cornerstone of optimal control theory, aids in determining 

the optimal path for transitioning the SIR model from one state to the next, particularly when 

constraints are imposed on state or input controls [13]. The remainder of this paper is organized as 

follows: Section 2 introduces the mathematical tools in Real-World Disease Control and Prevention . 

Section 3 delves into the control methodology, and Section 4 presents simulation results. Section 5 

showcases the graphical user interface (GUI) for SIR optimal control strategies, and Section 6 

concludes our study. 

2. Mathematical Tools in Real-World Disease Control and Prevention 

Mathematical tools play a crucial role in real-world disease control and prevention by offering 

quantitative frameworks and computational methods. These tools assist in evidence-based decision-

making, optimize control strategies, analyze data, forecast disease trends, and allocate resources 

effectively. By enhancing our understanding of epidemic dynamics and supporting policy 

development, mathematical tools contribute to more efficient and effective public health interventions.  

2.1. Mathematical Model of SIR 

The last few years have seen a significant increase in interest in epidemic mathematical models 

inside various formal frameworks [14]-[15]. Some of these models are expressed using dynamic 

systems, control theory, differential, difference, and hybrid equations [16]-[23], information theory, 

[24], etc. Modeling infectious illnesses is a fascinating area of mathematical biology. The models give 

a clear framework for understanding biological systems and their infections [25]-[26]. Thus, the 

development of a nonlinear system of ODE, which served as the basis for SIR and SEIR, marked the 

beginning of compartmental epidemic modeling [27]. Mathematical models are useful tools in many 

fields of biology, including ecology, evolution, toxicology, immunology, and natural resource 

management biology. Biological theory is tested and expanded upon using the findings from the 

analysis and simulation of epidemic models, which also serve as a basis for new hypotheses and 

studies. Numerous works on epidemiological modeling take into account deterministic modeling, 

which categorizes the population into classifications called compartments according to their 

epidemiological status, such as susceptible, infected, and recovering [28]. In this paper, we will 
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develop the SIR model, which is an epidemiological model designed to estimate the projected number 

of cases of an infectious disease within a confined community as time progresses. In the SIR model, 

it is assumed that individuals mix uniformly and have an equal likelihood of encountering each other, 

leading to an equal probability of infection for everyone. However, in reality, contact patterns can 

differ considerably due to factors like geographical location, social networks, and individual 

behaviors. Additionally, the SIR model assumes that the parameters governing disease transmission 

and recovery remain fixed throughout the epidemic. This assumption suggests that the disease 

dynamics and population characteristics do not undergo any changes over time. In actuality, the 

effectiveness of interventions, population behavior, and pathogen evolution can affect these 

parameters [29]. The SIR model as shown in Fig. 1 is a widely used mathematical framework in 

epidemiology to study the dynamics of infectious diseases. In this model, the population is divided 

into three groups: susceptible (S), infected (I), and recovered (R). Here's an explanation of the 

significance of each parameter and variable in the SIR model [29]. 

 

Fig. 1. SIR model without control [1], [29] 

• Susceptible population (𝑆) 

This variable represents the number of individuals who have not been infected and are susceptible 

to contracting the disease. 

• Infected population (𝐼) 
This variable represents the number of individuals who are currently infected and can transmit 

the disease to susceptible individuals. 

• Recovered population (𝑅) 

This variable represents the number of individuals who have recovered from the infection and 

have developed immunity, either through treatment or by surviving the disease. Recovered 

individuals are no longer susceptible to reinfection and cannot spread the disease. 

• Transmission rate (𝛽) 

This parameter quantifies the speed at which the infection spreads from infected individuals to 

susceptible individuals. It depends on factors such as the contagiousness of the disease, contact 

patterns among individuals, and preventive measures in place. 

• Recovery rate (𝛾) 

This parameter represents the rate at which infected individuals recover from the disease and 

transition into the recovered compartment. It is the inverse of the average duration of the 

infection. A shorter recovery rate implies a faster recovery and a shorter period of infectiousness. 

The reason for including demographic factors like births and deaths caused by the disease in the 

SIR model is to consider how population changes influence the transmission and development of 

infectious diseases. By integrating demographic factors, the model becomes more holistic, allowing 

for a better grasp of disease dynamics and their potential long-term consequences [30]-[31]. 

The following presumptions are taken in the epidemiological SIR model presented here, which 

also takes into account the SIR epidemic model with demography [29]. We also have an additional 

equation where N is the entire population and must not change.  

 𝑁(𝑡) = 𝑆(𝑡)  + 𝐼(𝑡) + 𝑅(𝑡) (1) 
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The initial state conditions are 𝑆(0) ≥ 0, 𝐼(0) ≥ 0, 𝑎𝑛𝑑 𝑅(0) ≥ 0  and 𝑆(𝑡𝑓), 𝐼(𝑡𝑓), 𝑎𝑛𝑑 𝑅(𝑡𝑓) =

𝑓𝑟𝑒𝑒 𝑓𝑖𝑛𝑎𝑙 𝑠𝑡𝑎𝑡𝑒𝑠. Where the infection and recovery rates are represented by 𝛽 > 0 and 0 < 𝛾 <
1, respectively. Typically, we use S(0), I(0), and R(0) as the beginning conditions as the first 

observational data, and we assume that the entire population N is time-invariant for analysis. 

�̇�(𝑡) = �̇�(𝑡) + 𝐼(̇𝑡) + �̇�(𝑡) = 0µ and 𝜖 ∈ [0, 1] are, respectively, births and deaths due to 

disease. The equations of the SIR model are [29]-[30]: 

 �̇�(𝑡) = µ𝑁 −
𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜖𝑆(𝑡),   𝑆(0) = 𝑆0 (2) 

 𝐼(̇𝑡) =
𝑆(𝑡)𝐼(𝑡)

𝑁
−  𝛾𝐼(𝑡) − 𝜖𝐼(𝑡),   𝐼(0) = 𝐼0 (3) 

 �̇�(𝑡) =  𝛾𝐼(𝑡) −  𝜖𝑅(𝑡), 𝑅(0) = 𝑅0 (4) 

The population is N(t), and its derivative over time can be calculated by �̇�(𝑡) = �̇�(𝑡) + 𝐼(̇𝑡) + �̇�(𝑡) 

 �̇�(𝑡) =  µ𝑁 −
𝑆(𝑡)𝐼(𝑡)

𝑁
(𝛽 + 1) −  𝜖(𝑆(𝑡) − 𝐼(𝑡))           (5) 

𝑁(0) = 𝑁0 = 𝑆0 + 𝐼0 +  𝑅0 at equilibrium points, the SIR model's parameters do not alter over time, 

i.e. [30]. �̇�(𝑡) = 𝐼(̇𝑡) = �̇�(𝑡) = 0. So, we can rewrite (2) and (3) as assuming tiny value of µ, and 𝜖 

about equal to zero. 

 �̇�(𝑡) = 0 ≈ − 𝛽
𝑆 𝐼

𝑁
           (6) 

 𝐼(̇𝑡) = 0 ≈
𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝛾𝐼(𝑡) (7) 

Assume 𝑓1 (𝑆, 𝐼) =  
𝑑𝑆

𝑑𝑡
𝑎𝑛𝑑 𝑓2 (𝑆, 𝐼) =  

𝑑𝐼

𝑑𝑡
. The Jacobian matrix A as in the following form [31]. By 

substitute equilibrium point (𝑆 = 𝑁, 𝐼 = 0). Then, calculate the eigenvalues from, 

 

A = [

𝜕𝑓1

𝜕𝑆

𝜕𝑓1

𝜕𝐼
𝜕𝑓2

𝜕𝑆

𝜕𝑓2

𝜕𝐼

] = |
−
𝛽𝐼

𝑁
−
𝛽𝑆

𝑁
𝛽𝐼

𝑁

𝛽𝑆

𝑁
−  𝛾

| = [
0 −𝛽
0 𝛽 −  𝛾

]  (8) 

 
|𝑟 𝐼 − 𝐴| = 0 → | 

𝑟 −𝛽
0 𝑟 − 𝛽 + 𝛾

 | = 𝑟(𝑟 −  𝛽 +  𝛾) = 0 (9) 

These two eigenvalues are provided 𝑟 = 0, and 𝑟 = 𝛽 − 𝛾 In general, the eigenvalue 𝑟 = 0 neglect 

it (because it is not practical). Where classification of the equilibrium point (𝑟1 and 𝑟2 are the two 

eigenvalues of A) are: 

• 𝑟1, 𝑟2 > 0  unstable node 

• 𝑟1, 𝑟2 < 0  stable  node 

• 𝑟1 > 0, 𝑟2 < 0  saddle point 

So with eigenvalue 𝑟 = 𝛽 − 𝛾 , have two solutions if 𝑟 = 𝛽 − 𝛾 > 0, the solution grows away 

from the equilibrium, the equilibrium is unstable. For the SIR model, this is an epidemic. If  𝑟 = 𝛽 −
 𝛾 < 0, the solution contract back towards the equilibrium. The equilibrium is stable. For the SIR 

model, this is no epidemic. 

2.2. Neural Networks Identification 

The System Identification (SI) method uses observed input-output data to approximate a system's 

model. One of the most crucial factors to consider before designing a controller is system 
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identification. The suggested method employs a back propagation neural network (NN) to anticipate 

the system's output for a new input based on previous inputs and outputs [32]-[33]. The use of neural 

networks in epidemic modeling aims to harness their capabilities in capturing intricate patterns and 

connections within the data. Neural networks, including Recurrent Neural Networks (RNNs), excel at 

processing extensive information, handling sequential data, and effectively modeling nonlinear 

relationships. Epidemic data typically involves the disease's progression over time, making neural 

networks, particularly RNNs, well-suited for modeling time-series data and capturing the temporal 

dependencies and dynamics of the epidemic. By employing neural networks, we can effectively 

capture complex and nonlinear relationships among various factors like population demographics, 

transmission rates, and intervention measures. This approach facilitates a more comprehensive 

understanding of the intricate interactions and complexities associated with disease spread. The RNN 

is depicted in Fig. 2 with 𝑛 inputs, 𝑡 outputs, and 𝑚 hidden layer nodes. The input, internal state, and 

output vector of the network are each represented by 𝑢, 𝑧, and 𝑦, respectively [34].  

  {

𝑢(𝑘) = [𝑢1(𝑘) … 𝑢𝑛(𝑘)]
𝑇

𝑧(𝑘) = [𝑧1(𝑘) … 𝑧𝑚(𝑘)]
𝑇

�̂�(𝑘) = [�̂�1(𝑘) … �̂�𝑡(𝑘)]
𝑇

}     (10) 

The equations of the network are                           

 {
𝑧(𝑘) = 𝜓(𝑊𝑢(𝑘) + 𝑆𝑧(𝑘 − 1))

 �̂�(𝑘) =  𝑉𝑧(𝑘)
}     (11) 

𝜓 is the tangent hyperbolic function and is the activation function of the interior layer neurons.    

 𝜓(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
     (12) 

Where 𝑊 𝑚 × 𝑛, 𝑆 𝑚 ×𝑚, and 𝑉 𝑡 × 𝑚 are weight matrices 

 

Fig. 2. Neural network structure [32] 

The training process for a neural network entail presenting it with input data along with the 

corresponding expected output. The network then adapts its internal parameters, referred to as weights 

and biases, to reduce the disparity between its output and the desired output. Backpropagation is 

employed to propagate the error backwards through the network. This technique involves calculating 

the gradients of the loss function with respect to the weights and biases of each neuron. These gradients 

indicate the direction and magnitude of adjustments needed to minimize the prediction error. The 

network's weights and biases are subsequently updated in accordance with the computed gradients 
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using an optimization algorithm, such as gradient descent. The Mean Square Error (MSE) provides as 

the cost function, for 𝑁 is the number of training samples. 𝑦 is the actual output and �̂� is the predicted 

output of neural network. 

         𝑀𝑆𝐸 = 
1

𝑁
∑ 𝑒(𝑘)𝑇𝑁
𝑘=1 . 𝑒(𝑘)     (13) 

 𝑀𝑆𝐸 = 
1

𝑁
∑(�̂�(𝑘) − 𝑦(𝑘))𝑇
𝑁

𝑘=1

. (�̂�(𝑘) − 𝑦(𝑘)) (14) 

The selection of network architecture, including the number of neurons in the hidden layer and 

the choice of activation functions, is influenced by several factors, such as the problem's complexity, 

computational resources available, and prior knowledge about the data. Having too few neurons may 

result in underfitting, where the network fails to capture complex patterns in the data. Conversely, an 

excessive number of neurons can lead to overfitting, where the network overly memorizes the training 

data instead of learning generalizable patterns. The selection of activation functions is dependent on 

the problem's nature and the specific characteristics of the data [34]-[35].  

In our model, the RNN based on the SIR network model contains two different states of the 

number of neurons in the hidden layer where in the first case five neurons were used and in the second 

case twenty neurons, with tan activation functions in each case and three saturated linear functions 

were used in the output layer as shown in Fig. 3.  

     

Fig. 3. Neural network structure of SIR model 

The selection of 5 and 20 neurons in the hidden layer could have been determined by conducting 

experiments and validation on the particular problem and dataset. These specific configurations might 

have been identified as a suitable balance between model complexity and generalization, leading to 

satisfactory performance in terms of prediction accuracy while avoiding issues of overfitting or 

underfitting.  The input and output data sets used for training are obtained by numerical solution for 

differential equations of SIR model. The first offline batch Levenberg-Marquadt optimization network 

training is done [32]. The prediction error is the networks. Therefore, the algorithm's main goal is to 

reduce the prediction error over the training set of data. The results that show the neural network 

model for five and twenty neurons in hidden layer predicted outputs versus the actual SIR model 

outputs are shown in Fig. 4 and Fig. 5 respectively. At this point, the optimal network weights for 

network (20 neuron in hidden layer) are stored and used for validation [33]-[35]. The model is trained 

using the training vectors repeatedly until the training successfully decreases network error to the 

desired outcome. The MSE squared error starting at a large value and decreasing to a small value as 

shown in Fig. 6, where three lines make up the plot, representing the training, validation, and test 

phases. After 416 training iterations, the cost function is minimized to the order of 4.5 × 10−9.   

Validation involves utilizing both the training and test datasets to assess the degree of alignment 

between the neural identification model and the numerically obtained data. This process provides 

insights into the accuracy and closeness of fit between the model and the actual data. 
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Fig. 4. Outputs of actual SIR model with outputs of NN model based 5 neurons in hidden layer 

 

Fig. 5. Outputs of actual SIR model with output of NN model based 20 neurons in hidden layer 

 

Fig. 6. MSE of NN base 20 neurons in hidden layer 
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Fig. 7 shows the difference between the actual values and the estimated values for all states of 

the SIR system using neural networks if 20 neurons are used in the hidden layer. Table 1 presents 

the MSE for susceptible, infection and recovery respectively, based 20 neurons neural network 

model. The obtained result demonstrates that neural networks can be used effectively for the 

identification of SIR model. The validation results for the susceptible output are depicted in Fig. 8, 

illustrating that the prediction error over the training data is minimal. 

 

Fig. 7. Difference between actual and predicted states 

 

Fig. 8. Function fit for susceptible case 

Table 1.  MSE of SIR model-based 20 neurons NN 

Susceptible Infection Recovery 
0.0677 0.1716 0.3149 

 

Fig. 9 displays the error histogram with 20 bins for the three neural network modeling processes 

of training, validation, and testing. The quantity of samples from the dataset that fall into each vertical 

bar's respective bin is shown.  In the Fig. 9 presented, a yellow line in the center represents a zero 

error, indicating 350 instances within the training set. In the middle of the plot, there is a bin that 

corresponds to an error of 1.56 × 10−6. The height of this bin for the training dataset is slightly 

below 225, indicating that around 225 samples in the training dataset have errors falling within this 

range. Additionally, both the validation and test datasets fall between the range of 225 and 325, 

suggesting that a significant number of samples from different datasets have errors within this 

specific range. 

Also, linear regression analysis is the most standard method to test the performance of a NN 

model. Here the neural network output and the corresponding data set target for the testing 

https://www.neuraldesigner.com/learning/tutorials/neural-network
https://www.neuraldesigner.com/learning/tutorials/data-set
https://www.neuraldesigner.com/learning/tutorials/data-set#TestingInstances
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instances are plotted as shown in Fig. 10. From the simulation results, the correlation coefficient is 

very close to 1, we can say that the neural network predicts the SIR model very well. 

 

Fig. 9. Histogram with 20 bins for the training, validation, and test in NN model 

 

Fig. 10. Test data for Validation neural model  

2.3. Optimal Control Strategies 

Optimal control strategies are crucial in managing epidemics as they are vital for implementing 

efficient interventions, optimizing the allocation of resources, reducing disease transmission, ensuring 

cost-effectiveness, enabling timely decision-making, facilitating long-term planning, and adapting to 

changing circumstances. These strategies offer a systematic and evidence-based approach to 

minimizing the impact of infectious diseases on public health and society as a whole. Optimal control 

strategies are beneficial in curtailing the transmission of infectious diseases by employing measures 

like vaccination campaigns, quarantine protocols, contact tracing, social distancing, and travel 

restrictions.  

These strategies aim to decrease contact rates and restrict the spread of the disease among the 

population. Optimal control strategies, also aid in efficiently distributing scarce resources like 

healthcare facilities, medical supplies, and personnel. Through strategic resource management, these 

strategies ensure that healthcare systems are well-equipped to handle a surge in cases, deliver suitable 

treatment, and alleviate strain on the healthcare infrastructure [35]-[36].  In this section, we investigate 

the behavior of the SIR model using optimal control theory. To design and implement optimal control 

strategies, we employ the PMP, which is commonly used for obtaining optimal control strategies in 

continuous processes. Various mathematical techniques exist for solving optimal control problems. 

The following explanation outlines how these techniques can be applied to solve simpler problems.  

The PMP steps are illustrated in the flowchart presented in Fig. 11, [29], [37]. 

https://www.neuraldesigner.com/learning/tutorials/data-set#TestingInstances
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Fig. 11. Flowchart of the PMP steps [29] 

1. Construct the problem's Hamiltonian equation. 

 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝜆𝑇𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) (15) 

Where, 𝐻(𝑡, 𝑥, 𝑢, 𝜆) is a Hamilton equation, 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡). 𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) are based on state, 

control, and tim. 𝜆𝑇(𝑡) is a vector of costate vector of nth order 

 

2. Differentiation Hamilton's equation to get the optimal control 𝑢∗(t) 

 𝐻(𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡), 𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡) + 𝜆𝑇𝑔(𝑥(𝑡), 𝑢(𝑡), 𝑡) (16) 

To obtain 𝑢∗(𝑡) =  h(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡). Here h(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡) represents a function that depends on 

the optimal states, optimal control, and time. 

3. Find 𝐻∗ using optimal control signal 𝑢∗. 

 𝐻∗(𝑥∗(𝑡), h(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡 ), 𝜆∗(𝑡), 𝑡 ) = 𝐻∗(𝑥∗(𝑡), 𝜆∗(𝑡), 𝑡 ) (17) 

4. Find the solution to the set of differential equations and the adjoint condition. 

 (�̇�)
∗
= −(

𝜕𝐻

𝜕𝑥
)
∗

 
→ (�̇�)

∗
= −(𝑓𝑥 +  𝜆𝑔𝑥) (18) 

The differentiation of the 𝑓 and 𝑔 in relation to the state 𝑥 is indicated by the symbols 𝑓𝑥 , 𝑔𝑥. With 

transversality condition,  𝜆(𝑡𝑓) = 0 and transversality condition,  𝜆(0) = 0. The state equation, the 

differentiation of the 𝑓 and 𝑔 in relation to the adjoint 𝜆 is indicated by the symbols 𝑓𝜆, 𝑔𝜆. 

 (�̇�)∗ = (
𝜕𝐻

𝜕𝜆 
)
∗

 
→ (�̇�)∗ = (𝑓𝜆 +  𝜆𝑔𝜆) (19) 

Transversality conditions play a crucial role in optimal control problems by incorporating 

endpoint constraints, which define the desired behavior or conditions at the final time point. By 

satisfying these conditions, the optimal control solution ensures that the system reaches the desired 

endpoint consistently and appropriately. Moreover, transversality conditions transform the optimal 
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control problem into a boundary value problem. This conversion enables the utilization of 

mathematical techniques and algorithms specifically designed for solving boundary value problems. 

By formulating the problem in terms of both initial and final conditions, the transversality conditions 

provide a comprehensive depiction of the system dynamics [38]-[39]. 

5. Using MATLAB program to find the optimal control (u*) after determining the ideal states (𝑥∗) 
and adjoint (𝜆). 

When studying Hamiltonian equations and optimal control solutions within the context of 

managing epidemics, they offer valuable understanding about the most efficient approaches to 

mitigate disease transmission. The optimal controls signify the dynamic interventions or actions that 

are recommended to be implemented at different time points to minimize the spread of the disease. 

These controls encompass diverse measures, including vaccination rates, quarantine protocols, social 

distancing measures, or a combination of these strategies [40]-[41].  

3. Control Strategies  

The control strategies discussed in the paper hold significant importance, particularly within the 

field of epidemic models. Their primary objective is to effectively manage and reduce the transmission 

of infectious diseases, which is crucial in real-world scenarios with significant implications for public 

health. By implementing these control strategies, several benefits can be attained, including disease 

containment, resource allocation, decision support, and proactive planning. In conclusion, the 

investigation of these control strategies in the paper contributes to the advancement of evidence-based 

approaches to epidemic management, providing valuable insights and practical applications for 

addressing public health challenges [42]-[46]. 

3.1. Strategy 1 (Treatment Control) 

This technique uses SIR model equations with a control strategy that is represented by control u 

in Fig. 12. After the control signals are added, the system equations will take on the new form shown 

below [29], [47], [48]. 

 

Fig. 12. SIR model with Treatment Control control u 

 

{
 
 

 
 �̇�(𝑡) =  µ𝑁 −

𝛽𝑆𝐼

𝑁
− 𝜖𝑆 − 𝑢𝑆,      𝑆 (0) ≥ 0

𝐼(̇𝑡) =
𝛽𝑆𝐼

𝑁
−  𝛾𝐼 − 𝜖𝐼,                   𝐼(0) ≥ 0

�̇�(𝑡) =  𝛾𝐼 −  𝜖𝑅 + 𝑢𝑆,                   𝑅(0) ≥ 0}
 
 

 
 

 (20) 

uS stands for the optimal control, which maximizes the performance index with the goal of lowering 

the number of sick individuals, the time of recovery, and the treatment expense. The following is a 

representation of the performance index. 

 𝐽1 = 𝑚𝑖𝑛∫  
𝑡𝑓

0

[𝐼(𝑡) + 𝑊1

𝑢2(𝑡)

2
] . 𝑑𝑡 (21) 

Where 𝑊1
𝑢2(𝑡)
2

 defines the cost of the therapy, 𝑊1≥ 0 balances the cost variables and reflects the 

“weight” of the cost, and 𝑡𝑓 denotes the length of the treatment period. The goal is to use the optimal 

possible control 𝑢∗ to reduce the number of infected people and the cost of treatment. 



791 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 3, No. 4, 2023, pp. 780-803 

  

 

Ahmed J. Abougarair (Identification and Control of Epidemic Disease Based Neural Networks and Optimization 

Technique) 

 

 𝐽(𝑢∗) = min{ 𝐽(𝑢): 𝑢 ∈ 𝑈 } (22) 

The set of admissible controls 𝑈 defined by, 𝑈 = { 𝑢(𝑡): 0 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 , 𝑡 ∈ [0, 𝑡𝑓]. The 

following steps are required when applying the Pontryagin principle method to the SIR model in order 

to execute an optimal control. Hamiltonian equation is: 

 𝐻 = (𝐼 + 0.5 𝑊 𝑢2) + 𝑆 ̇ 𝜆1 + 𝐼 ̇𝜆2 + �̇�𝜆3               (23) 

And 
∂H

∂u
= 0 →

∂H

∂u
= 𝑊𝑢 − 𝜆1𝑆 + 𝜆3𝑆 = 0. By solving the Hamilton equation of equation to obtain  

𝑢∗, 

 𝑢∗ =
𝑆(𝜆1 − 𝜆3)

𝑊
 (24) 

The adjoint equations can be obtained by such that 𝜆1̇ = −
𝜕𝐻

𝜕𝑆
  , 𝜆2̇ = −

𝜕𝐻

𝜕𝐼
  and  𝜆3̇ = −

𝜕𝐻

𝜕𝑅
. 

 

{
 
 

 
 𝜆1̇ = −(

− 𝜆1𝛽𝐼

𝑁
− 𝜆1𝑢 +

𝜆2𝛽𝐼

𝑁
+ 𝜆3 𝑢 +  𝜖𝜆1)

𝜆2̇ = −(1 − 𝜆1𝛽𝑆 + 𝜆2𝛽𝑆 − 𝜆2𝛾 + 𝜆3𝛾 +  𝜖𝜆2)

𝜆3̇ = 𝜖𝜆3 }
 
 

 
 

 (25) 

The transversality conditions for free problem cases apply to this system, which is a free final state 

problem 𝜆1 (𝑡𝑓) =  𝜆2(𝑡𝑓) =  𝜆3(𝑡𝑓) = 0. 

3.2. Strategy 2 (Vaccination Control) 

The goal of the SIR model with control in the immunization control method is to increase 

recovery rates while minimizing the number of vulnerable, infected, and healing times. The efficiency 

index determined as [29], [49], [50]. 

 𝐽2 = 𝑚𝑖𝑛 ∫ [𝐴1𝑆(𝑡) + 𝐴2𝐼(𝑡) − 𝐴3𝑅(𝑡) +𝑊2

𝑢2(𝑡)

2
]

𝑡𝑓

0

 . 𝑑𝑡 (26) 

𝐴1, 𝐴2, 𝑎𝑛𝑑 𝐴3 are balancing cost factors, and the negative sign on 𝐴3 is to minimize recovery people 

in the shortest amount of time, where 𝑊2
𝑢2(𝑡)
2

 is indicating a cost of vaccination, the coefficient 𝑊2 ≥ 0 

is balancing cost factors signals the “weight” on cost. The goal is to use the best possible control to 

reduce the number of susceptible and infected people, the cost of vaccination, and to increase the 

number of people who recover in the quickest time possible 𝐽(𝑢∗) = min{ 𝐽(𝑢): 𝑢 ∈ 𝑈 }. 

The set of admissible controls defined by 𝑈 = { 𝑢(𝑡): 0 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 , 𝑡 ∈ [0, 𝑡𝑓]. The following 

steps, which combine the PMP and SIR models, must be taken in order to perform an optimal control. 

The Hamiltonian formula is: 

 𝐻 = (𝐴1𝑆(𝑡) + 𝐴2𝐼(𝑡) + 𝐴3𝑅(𝑡) +
𝑊𝑢2(𝑡)

2
) + 𝑆 ̇ 𝜆1   +  𝐼 ̇𝜆2 + �̇�𝜆3 (27) 

and 

 
∂H

∂u
= 0 →    

∂H

∂u
= 𝑊𝑢 − 𝜆1𝑆 + 𝜆3𝑆 (28) 

To obtain u*, the Hamilton equation is solved, 
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 𝑢∗ =
𝑆(𝜆1 − 𝜆3)

𝑊
 (29) 

The adjoint equations can be obtained by such that 𝜆1̇ = −
𝜕𝐻

𝜕𝑆
  , 𝜆2̇ = −

𝜕𝐻

𝜕𝐼
  and  𝜆3̇ = −

𝜕𝐻

𝜕𝑅
. 

 {

𝜆1̇ = −(𝐴1 −  𝛽𝐼𝜆1 − 𝑢𝜆1 + 𝜆2𝛽𝐼 + 𝜆3𝑢 +  𝜖𝜆1)

𝜆2̇ = −(𝐴2 −  𝛽𝑆𝜆1 −  𝛾𝜆2 +  𝛽𝑆𝜆2 + 𝜆3𝛾 + 𝜖𝜆2)

𝜆3̇ = 𝐴3  +  𝜖𝜆3

} (30) 

In the context of this system, we encounter a free final state problem that involves the application of 

transversality conditions specific to free problem cases 𝜆1 (𝑡𝑓) =  𝜆2(𝑡𝑓) =  𝜆3(𝑡𝑓) = 0. 

3.3. Strategy 3 (Susceptible Control) 

The objective functional which can be used to minimize number of susceptible individuals, time 

of recover, and cost of vaccination is [29], [51], [52]: 

                  𝐽3 = 𝑚𝑖𝑛 ∫  [𝐵 𝑆(𝑡) +𝑊3

𝑢2(𝑡)

2
]

𝑡𝑓

0

. 𝑑𝑡 (31) 

In the given context, 𝑊3
𝑢2(𝑡)

2
 represents the cost associated with vaccination, while 𝐵 is a factor that 

balances the proportion of susceptible individuals. The objective function aims to minimize the cost 

of vaccination and reduce the number of susceptible individuals. This is achieved by determining the 

optimal control 𝑢∗ that satisfies the given conditions 𝐽(𝑢∗) = min{ 𝐽(𝑢): 𝑢 ∈ 𝑈 }. The admissible 

controls 𝑈 defined by, 𝑈 = { 𝑢(𝑡): 0 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥, 𝑡 ∈ [0, 𝑡𝑓]. The Hamiltonian formula is: 

 𝐻 = (𝐵𝑆(𝑡) +
𝑊𝑢2(𝑡)

2
) + 𝑆 ̇ 𝜆1 + 𝐼 ̇𝜆2 + �̇�𝜆3 (32) 

and 

 
∂H

∂u
= 0 →

∂H

∂u
= 𝑊𝑢 − 𝜆1𝑆 + 𝜆3𝑆 (33) 

To obtain u*, the Hamilton equation is solved, 

 𝑢∗ =
𝑆(𝜆1 − 𝜆3)

𝑊
 (34) 

The adjoint equations can be obtained by such that 𝜆1̇ = −
𝜕𝐻

𝜕𝑆
, 𝜆2̇ = −

𝜕𝐻

𝜕𝐼
  and  𝜆3̇ = −

𝜕𝐻

𝜕𝑅
. In 

this particular system, we are dealing with a free final state problem that involves the application of 

transversality conditions specific to cases where the final state is unconstrained 𝜆1 (𝑡𝑓) = 𝜆2(𝑡𝑓) =

 𝜆3(𝑡𝑓) = 0. 

 {

𝜆1̇ = −(B −  𝛽𝐼𝜆1 + 𝜆2𝛽𝐼 − 𝜆1𝑢 +  𝜖𝜆1 + 𝜆3𝑢 )

𝜆2̇ = −(− 𝛽𝑆𝜆1 −  𝛾𝜆2 +  𝛽𝑆𝜆2 + 𝜆3𝛾 +  𝜖𝜆2)

𝜆3̇ = + 𝜖𝜆3

} (35) 

3.4. Strategy 4 (Quarantine and Vaccination Control) 

This approach uses SIR model equations as shown in Fig. 13 with the controls 𝑢1 , 𝑢2. The 

function that optimizes the performance index has parameters 𝑢1 , 𝑢2 that represent the optimal 

controls [29], [53], [54]. 
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Fig. 13. SIR model with control 𝑢1 and 𝑢2 

• 𝑢1 𝐼 : depicts quarantine, the method of controlling contaminated people 
• 𝑢2𝑆 : represents the quarantine that is used to regulate diseased people 

In this case the number of infected individuals, time of recover, and cost of vaccination and 

quarantine, can be minimized using the following objective function. 

 𝐽4 = 𝑚𝑖𝑛 ∫  
𝑡𝑓

0

[𝐶𝐼(𝑡) +𝑊41
𝑢1
2(𝑡)

2
+𝑊42

𝑢2
2(𝑡)

2
]  𝑑𝑡 (36) 

The weight is indicated by the coefficients 𝑊41 and 𝑊42 > 0, which are balancing cost factors. 

𝑊42
𝑢2
2(𝑡)

2
  stands in for the cost of quarantine where 𝑊41

𝑢1
2(𝑡)

2
stands for the cost of immunization, and 

𝐶  is a balancing to numbers of infected individuals.  The goal is to use the best controls 𝑢1
∗, 𝑢2

∗ to 

reduce the cost of vaccination and quarantine while also reducing the number of infected people 

𝐽(𝑢1
∗, 𝑢2

∗) = min{ 𝐽(𝑢1, 𝑢2): 𝑢1, 𝑢2  ∈ 𝑈 }. 

The admissible controls 𝑈 defined by 𝑈 = { 𝑢1, 𝑢2(𝑡): 0 ≤ 𝑢1, 𝑢2  ≤ 𝑢𝑚𝑎𝑥 , 𝑡 ∈ [0, 𝑡𝑓]. The 

Hamiltonian formula is. 

 𝐻 = (𝐶 𝐼(𝑡) +𝑊1
𝑢1
2(𝑡)

2
+𝑊2

𝑢2
2(𝑡)

2
) + 𝑆 ̇ 𝜆1 + 𝐼 ̇𝜆2 + �̇�𝜆3 (37) 

And 

 

{
 

 
∂H

∂𝑢1
= 0 → 

∂H

∂𝑢1
= 𝑊1𝑢1 − 𝜆2𝐼 + 𝜆3𝐼

∂H

∂𝑢2
= 0 →

∂H

∂𝑢2
= 𝑊2𝑢2 − 𝜆1𝑆 + 𝜆3𝑠 }

 

 

 (38) 

To obtain  𝑢1
∗ and 𝑢2

∗the Hamilton equation is solved, 

 

{
 
 

 
 𝑢1

∗ =
𝐼(𝜆2 − 𝜆3)

 𝑊1

𝑢2
∗ =

𝑆(𝜆1 − 𝜆3)

 𝑊2 }
 
 

 
 

 (39) 

The adjoint equations can be obtained by such that:  

 

{
 
 

 
 

𝜆1̇ = −(−𝛽𝐼𝜆1 + 𝜆2𝛽𝐼 − 𝜆1𝑢2
+𝜆3𝑢2 + 𝜖𝜆1)

𝜆2̇ = −(𝐶 − 𝛽𝑆𝜆1 − 𝛾𝜆2 + 𝛽𝑆𝜆2 + 𝜆2𝑢1 + 𝜆3𝛾
+𝜆3𝑢1 + 𝜖𝜆2)

𝜆3̇ = + 𝜖𝜆3 }
 
 

 
 

 (40) 

The system at hand represents a free final state problem that necessitates the consideration of 

transversality conditions [55]-[56], 𝜆1 (𝑡𝑓) = 𝜆2(𝑡𝑓) = 𝜆3(𝑡𝑓) = 0. 
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4. Simulation Results 

Table 2 displays the COVID-19 data's numerical values. The total value of 𝛽 is treated as an 

average value when performing analysis. While the value of 𝛾 is kept very low, Table 3 also shows 

the ideal control weights for each strategy. 

Table 2.  COVID -19 Data [29], [54] 

    𝜷 𝛄 µ 𝝐 𝑻 𝑺𝟎 𝑰𝟎 𝑹𝟎 

0.47/ (Days. People) 0.343 /Days 0.0007 0.0007 45 Days 75% People 20% People 5% People 

Table 3.  Disease optimal control weights [29] 

Strategy (1) 𝑊1= 2 

Strategy (2) 
𝑊2= 1,   𝐴1 = 0.5,  

  𝐴2 = 0.25     𝐴3 = 0.13 

Strategy (3) 𝑊3= 1.5,   𝐵 = 0.1 

Strategy (4) 𝑊41= 1,    𝑊42 = 0.5,    𝐶 = 0.025 

 

In the realm of COVID-19 control, 𝛽, 𝛾, and control weights play crucial roles in comprehending 

and managing the spread of the disease. A higher 𝛽 signifies a more contagious virus, resulting in 

rapid spread and larger outbreaks. It is vital to grasp and estimate 𝛽 to evaluate the impact of 

interventions like social distancing, mask-wearing, and vaccination in reducing transmission rates. 

Estimating 𝛾 aids in comprehending the natural progression of the disease, determining outbreak 

durations, and calculating indicators such as the primary reproduction number, which denotes the 

number of new infections caused by each infected individual among a susceptible population. Control 

weights pertain to the relative significance or effectiveness assigned to different control measures or 

interventions. In the context of COVID-19, control weights can indicate the impact of diverse 

measures like lockdowns, testing, contact tracing, vaccination, and public health guidelines. By 

assigning appropriate control weights, effectiveness of various interventions can be quantified, 

allowing for optimized control strategies. Mathematical models can incorporate these weights to 

assess the collective impact of multiple interventions, facilitate decision-making, and prioritize 

resources to achieve maximum disease control [57]-[58]. 

As shown in Fig. 14, the dynamic behavior of the system is examined using numerical simulation 

with no controls. The primary issue is that the population of susceptible individuals is growing over 

time. We will investigate the impact of altering some factors on system performance in order to 

accurately comprehend the system. To illustrate their effects, the simulation is run as a function of the 

𝛽 and 𝛾. 

 

Fig. 14. Dynamic behavior of the SIR model without control 

Using change 𝛽 and 𝛾, the following simulation results are produced. Fig. 15 illustrates the 

impacts of changing the recovery rate factor (𝛾=0.1, 0.067 and 0.033) when the spreading rate is low 
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(𝛽=0.1). It is obvious that when the 𝛾 factor is low, the number of infected persons increases and the 

diseased people take a long time to recover. The number of affected people falls as the rate of recovery 

rises. Fig. 16 demonstrates how the number of vulnerable individuals is dramatically decreased when 

the spreading rate is increased to (𝛽 = 0.9), where (𝛾=0.1, 0.067, and 0.033). Due to the increased 

number of infected people and the longer recovery times, a high recovery rate factor is necessary to 

quicken the healing process. 

 

Fig. 15. SIR model characterized for β = 0.1 

 

Fig. 16. SIR model characterized for β = 0.9 

A higher or lower value of 𝛽 indicates a corresponding increase or decrease in the likelihood of 

disease transmission. This parameter is influenced by various factors, including the disease's 

infectivity, the nature of contact between individuals, and the implementation of preventive measures 
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like mask usage and social distancing. 𝛽 is a significant parameter as it directly affects the intensity 

and spread of the epidemic. Similarly, a higher or lower value of 𝛾 signifies a faster or slower rate of 

recovery, respectively. 𝛾 is influenced by factors such as the effectiveness of treatments, the natural 

progression of the disease, and an individual's immune response. This parameter plays a crucial role 

in determining the duration of an individual's infectious period and consequently affects the overall 

duration of the epidemic. To summarize, 𝛽 reflects the contagiousness of the disease and governs the 

transmission rate, while 𝛾 represents the recovery rate and influences the duration of infection. 

Understanding these parameters is crucial for comprehending how the model simulates epidemic 

dynamics, as they directly impact the spread and control of infectious diseases. 

In the subsequent analysis, the SIR model is subjected to four distinct control strategies, and a 

comparative evaluation is performed based on the simulation results. Fig. 17 illustrates that strategy 

(2) outperforms the other strategies by effectively reducing the number of susceptible individuals and 

preventing their infection. Furthermore, Fig. 18 demonstrates the impact of all control strategies on 

the number of infected individuals. It is evident that strategy (2) successfully mitigates the spread of 

infection, bringing the number of infected individuals to an acceptable level within the initial ten-day 

period. 

 

Fig. 17. Susceptible individuals with control strategies 

 

Fig. 18. Infected individuals with control strategies 

Fig. 19 highlights the observable improvements and shorter recovery period achieved by strategy 

(2) compared to the other approaches. This emphasizes the superiority of immunization over medical 

intervention. Notably, strategy (2) has a significantly higher number of individuals in recovery 

between day 0 and day 45, indicating its effectiveness in minimizing the recovery time. In contrast, 

Fig. 20 shows that strategy (2) is not as effective in terms of cost minimization. Strategies (1) and (4) 

0 5 10 15 20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
 Control strategies for Susceptible people

Days

S
u
s
c
e
p
ta

b
le

 

 

 

Without Control

Str
1

Str
2

Str
3

Str
4

0 5 10 15 20 25 30 35 40 45
0

0.05

0.1

0.15

0.2

0.25
 Control strategies for Infected people

Days

In
fe

c
ti
o
u
s

 

 

Without Control

Str
1

Str
2

Str
3

Str
4



797 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 3, No. 4, 2023, pp. 780-803 

  

 

Ahmed J. Abougarair (Identification and Control of Epidemic Disease Based Neural Networks and Optimization 

Technique) 

 

perform better in terms of reducing costs compared to the other strategies. It is worth mentioning that 

the global community is actively searching for an efficient control strategy to swiftly contain and 

prevent the rapid spread of epidemics, as evident in the race to develop a vaccine for COVID-19.In 

conclusion, the simulation results demonstrate the effectiveness of strategy (2) in reducing 

susceptibility, preventing infection, and achieving shorter recovery periods. However, strategies (1) 

and (4) excel in cost minimization. The priority remains on safeguarding human lives, as evidenced 

by the urgent scientific efforts to develop vaccines and control measures for COVID-19.  

 

Fig. 19. Recovery individuals with control strategies 

 

Fig. 20. Comparative between all control strategies 

To determine the optimal control strategy among these four, we have to calculate the Eefficiency 

Iindex  (EI)  as presented in Table 4 [8]. 

Table 4.  Efficiency Index of SIR model with different strategies 

 
Efficiency Index % 

Str_1 Str_2 Str_3 Str_4 

Ssusceptible 46 % 89 % 75 % 83 % 

Iinfected 40 % 81 % 40 % 54 % 

 

 𝐸𝐼 = (1 −
𝐴𝑜
𝐴𝐶
) × 100 (41) 

where 𝐴𝑜 and 𝐴𝐶 are the cumulated number of state individuals without and with control, respectively. 

we can conclude that Strategy 2 is the optimal strategy. 
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It's important to acknowledge that the effectiveness of vaccination control (Strategy (2)) can vary 

due to several factors, such as vaccine efficacy, coverage rates, the emergence of new variants, and 

vaccine hesitancy. However, overall, vaccination control has proven to be a highly effective approach 

in reducing susceptibility, preventing infection, and shortening recovery periods in a population. To 

summarize, the effectiveness of vaccination control stems from its ability to stimulate the immune 

system, provide long-lasting protection, decrease disease severity, contribute to herd immunity, 

control transmission, and adapt to emerging variants. These characteristics collectively establish 

vaccination control as a highly efficient strategy for combating infectious diseases and mitigating their 

impact on public health. Also, treatment control (Strategy (1)) and quarantine and vaccination control 

(Strategy (4)) tend to be more cost-effective due to their targeted approach, early intervention, and 

preventive nature. However, trade-offs exist between effectiveness and cost, such as upfront 

investment, coverage rates, long-term costs, and the broader economic impact. Evaluating these trade-

offs is crucial in determining the most appropriate and cost-effective control strategies for specific 

infectious diseases and populations. 

5. GUI of SIR Optimal Control Strategies  

To easily comprehend and determine system performance by altering any of the parameters. The 

SIR mathematical model's optimal control for various control strategies is investigated by the 

MATLAB program [59]-[61] with GUI shown in Fig. 21. These characteristics apply to this 

configuration: 

• The ability to quickly enter data and modify variable values. 

• The ability to choose the best possible control for the problem's and the infectious disease's type. 

• The ability to enter new weights for the ideal controls for every strategy as needed to achieve the 

best outcomes. 

• It is possible to study and follow the behavior of other infectious diseases that are most prevalent 

in reality, such Covid-19 disease, Ebola, and influenza. 

 

Fig. 21. GUI of SIR model for different diseases with optimal control [29] 

The GUI for the SIR model offers a visual representation of disease dynamics, enabling users to 

observe the disease's spread over time. Interactive graphs and charts provide valuable insights into the 

progression of the epidemic, including the populations of susceptible, infectious, and recovered 
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individuals. Moreover, the GUI incorporates optimal control strategies, which involve identifying the 

most effective combination of interventions to minimize the disease's impact. By utilizing the GUI, 

users can evaluate the effectiveness of various strategies and make informed decisions based on data 

to determine the most efficient control measures. Additionally, the GUI allows for sensitivity analysis, 

enabling users to modify model parameters such as transmission rates, recovery rates, or the 

effectiveness of control measures. This functionality empowers researchers and policymakers to 

assess how the model's outcomes respond to changes in input parameters, thereby aiding in the 

evaluation of the model's sensitivity to different scenarios and variables. 

6. Conclusion 

In summary, this paper presents a versatile neural network-based model augmented by PMP 

control, offering a powerful tool for the analysis and effective control of infectious diseases. The 

development of a user-friendly graphical user interface (GUI) enhances its accessibility and usability. 

Notably, our approach emphasizes the adaptability of control strategies, allowing for customization 

based on various disease attributes, including emergence period, geographical origin, and underlying 

factors influencing transmission and recovery. By integrating diverse datasets, including population 

dynamics, our model yields context-specific and data-driven results. The primary objective function, 

optimized through the PMP approach, focuses on minimizing susceptibility and infection rates while 

maximizing recovery. This multi-faceted approach holds promise for optimizing disease control and 

mitigation strategies. The practical significance of our research lies in its potential to inform decision-

makers in healthcare, public health, and policymaking. It offers a valuable tool for crafting tailored 

and effective responses to infectious disease outbreaks, ultimately minimizing their impact on 

communities and economies. Looking ahead, future research could explore extensions of our model 

and its application to a broader spectrum of infectious disease challenges. As we continue to grapple 

with the dynamics of infectious diseases, data-driven and adaptable approaches like ours will play a 

pivotal role in safeguarding public health. 

 

Author Contribution: All authors contributed equally to the main contributor to this paper. All authors read 

and approved the final paper. 
Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflicts of interest. 

 

References  

[1] N. S. Barlow and S. J. Weinstein, “Accurate closed-form solution of the SIR epidemic model,” Physica 

D: Nonlinear Phenomena, vol. 408, p. 132540,  2020, https://doi.org/10.1016/j.physd.2020.132540.  

[2] M. Pájaro, N. M. Fajar, A. Alonso, and I. Otero-Muras, “Stochastic SIR model predicts the evolution of 

COVID-19 epidemics from public health and wastewater data in small and medium-sized municipalities: 

A one year study,” Chaos, Solitons & Fractals, vol. 164, p. 112671, 2022, 

https://doi.org/10.1016/j.chaos.2022.112671.  

[3] Z. Shen, Y.-M. Chu, M. A. Khan, S. Muhammad, O. Al-Hartomy, and M. Higazy, “Mathematical 

modeling and optimal control of the COVID-19 dynamics,” Results in Physics, vol. 31, p. 105028, 2021, 

https://doi.org/10.1016/j.rinp.2021.105028.  

[4] M. Diagne, H. Rwezaura, S. Tchoumi, and J. Tchuenche, “A Mathematical Model of COVID-19 with 

Vaccination and Treatment,” Computational and Mathematical Methods in Medicine, vol. 2021, pp. 1-

16, 2021, https://doi.org/10.1155/2021/1250129.  

[5] A. Abougarair, M. Aburakhis, and M. Edardar, “Adaptive Neural Networks Based Robust Output 

Feedback Controllers for Nonlinear Systems,” International Journal of Robotics and Control Systems, 

vol. 2, no. 1, pp. 37-56, 2022, https://doi.org/10.31763/ijrcs.v2i1.523.  

file:///C:/Users/SAQER/Desktop/الورقات%20المنشورة%20-2021/Ahmed%202023/Physica%20D:%20Nonlinear%20Phenomena
file:///C:/Users/SAQER/Desktop/الورقات%20المنشورة%20-2021/Ahmed%202023/Physica%20D:%20Nonlinear%20Phenomena
https://www.sciencedirect.com/journal/physica-d-nonlinear-phenomena/vol/408/suppl/C
https://doi.org/10.1016/j.physd.2020.132540
https://doi.org/10.1016/j.chaos.2022.112671
https://doi.org/10.1016/j.rinp.2021.105028
https://doi.org/10.1155/2021/1250129
https://doi.org/10.31763/ijrcs.v2i1.523


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

800 
Vol. 3, No. 4, 2023, pp. 780-803 

 

 

Ahmed J. Abougarair (Identification and Control of Epidemic Disease Based Neural Networks and Optimization 

Technique) 

 

[6] S. Ullah and M. A. Khan, “Modeling the impact of non-pharmaceutical interventions on the dynamics of 

novel coronavirus with optimal control analysis with a case study,” Chaos, Solitons & Fractals, vol. 139, 

p. 110075, 2020, https://doi.org/10.1016/j.chaos.2020.110075.  

[7] T. Li and Y. Xiao, “Optimal strategies for coordinating infection control and socio-economic activities,” 

Mathematics and Computers in Simulation, vol. 207, pp. 533–555, 2023, 

https://doi.org/10.1016/j.matcom.2023.01.017.  

[8] J. Agbomola and A. Loyinmi, “Modelling the impact of some control strategies on the transmission 

dynamics of Ebola virus in human-bat population: An optimal control analysis,” Heliyon, vol. 8, no. 12, 

p. e12121, 2022, https://doi.org/10.1016/j.heliyon.2022.e12121.  

[9] G. Goswami and T. Labib, “Modeling COVID-19 Transmission Dynamics: A Bibliometric Review,” 

International Journal of Environmental Research and Public Health, vol. 19, no. 21, p. 14143, 2022, 

https://doi.org/10.3390/ijerph192114143.  

[10] I. Rahimi, A. Gandomi, P. Asteris, and F. Chen, “Analysis and Prediction of COVID-19 Using SIR, 

SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases,” Information, vol. 12, no. 3, p. 

109, 2021, https://doi.org/10.3390/info12030109.  

[11] Y. Zhi, W. Weiqing, C. Jing, and N. Razmjooy, “Interval linear quadratic regulator and its application for 

speed control of DC motor in the presence of uncertainties,” ISA Transactions, vol. 125, pp 252–259, 

2022, https://doi.org/10.1016/j.isatra.2021.07.004.  

[12] J. Yang, Z. Chen, Y. Tan, Z. Liu, and R. Cheke, “Threshold dynamics of an age-structured infectious 

disease model with limited medical resources,” Mathematics and Computers in Simulation, vol. 214, pp. 

114–132, 2023, https://doi.org/10.1016/j.matcom.2023.07.003. 

[13] D. I. Ketcheson, “Optimal control of an SIR epidemic through finite-time non-pharmaceutical 

intervention,” Journal of Mathematical Biology, vol. 83, no. 1, 2021, https://doi.org/10.1007/s00285-021-

01628-9. 

[14]  M. De la Sen, R. Nistal, S. Alonso-Quesada, and A. Ibeas, “Some Formal Results on Positivity, Stability, 

and Endemic Steady-State Attainability Based on Linear Algebraic Tools for a Class of Epidemic Models 

with Eventual Incommensurate Delays,” Discrete Dynamics in Nature and Society, vol. 2019, p. 

e8959681, 2019, https://doi.org/10.1155/2019/8959681.  

[15] L. Pujante-Otalora, B. Canovas-Segura, M. Campos, and J. M. Juarez, “The use of networks in spatial 

and temporal computational models for outbreak spread in epidemiology: A systematic review,” Journal 

of Biomedical Informatics, vol. 143, p. 104422, 2023, https://doi.org/10.1016/j.jbi.2023.104422.  

[16] J. E. Amaro, “Systematic description of COVID-19 pandemic using exact SIR solutions and Gumbel 

distributions,” Nonlinear Dynamics, vol. 111, no. 2, pp. 1947–1969, 2022, 

https://doi.org/10.1007/s11071-022-07907-4.  

[17] M. Abujarir, A. Abougarair, and H. Tarek “Artificial pancreas control using optimized fuzzy logic based 

genetic algorithm,” International Robotics & Automation Journal, vol. 9, pp. 89-97, 2023. 

https://medcraveonline.com/IRATJ/IRATJ-09-00270.pdf. 

[18] A. Kumar, K. Goel, and Nilam, “A deterministic time-delayed SIR epidemic model: mathematical 

modeling and analysis,” Theory in Biosciences, vol. 139, no. 1, pp. 67–76, 2019, 

https://doi.org/10.1007/s12064-019-00300-7. 

[19] L. Bai, J. J. Nieto, and J. M. Uzal, “On a delayed epidemic model with non-instantaneous impulses,” 

Communications on Pure & Applied Analysis, vol. 19, no. 4, pp. 1915–1930, 2020, 

https://doi.org/10.3934/cpaa.2020084.  

[20] M. De la Sen, A. Ibeas, S. Alonso-Quesada, and R. Nistal, “On a SIR Model in a Patchy Environment 

Under Constant and Feedback Decentralized Controls with Asymmetric Parameterizations,” Symmetry, 

vol. 11, no. 3, p. 430, 2019, https://doi.org/10.3390/sym11030430.  

[21] M. De la Sen, S. Alonso-Quesada, A. Ibeas, and R. Nistal, “On a Discrete SEIR Epidemic Model with 

Two-Doses Delayed Feedback Vaccination Control on the Susceptible,” Vaccines, vol. 9, no. 4, p. 398, 

2021, https://doi.org/10.3390/vaccines9040398.  

https://doi.org/10.1016/j.chaos.2020.110075
https://doi.org/10.1016/j.matcom.2023.01.017
https://doi.org/10.1016/j.heliyon.2022.e12121
https://doi.org/10.3390/ijerph192114143
https://doi.org/10.3390/info12030109
https://doi.org/10.1016/j.isatra.2021.07.004
https://doi.org/10.1016/j.matcom.2023.07.003
https://doi.org/10.1007/s00285-021-01628-9
https://doi.org/10.1007/s00285-021-01628-9
https://doi.org/10.1155/2019/8959681
https://doi.org/10.1016/j.jbi.2023.104422
https://doi.org/10.1007/s11071-022-07907-4
https://medcraveonline.com/IRATJ/IRATJ-09-00270.pdf
https://doi.org/10.1007/s12064-019-00300-7
https://doi.org/10.3934/cpaa.2020084
https://doi.org/10.3390/sym11030430
https://doi.org/10.3390/vaccines9040398


801 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 3, No. 4, 2023, pp. 780-803 

  

 

Ahmed J. Abougarair (Identification and Control of Epidemic Disease Based Neural Networks and Optimization 

Technique) 

 

[22] M. De, S. Alonso-Quesada, S. M. Muyeen, and R. Nistal, “On an SEIADR epidemic model with 

vaccination, treatment and dead-infectious corpses removal controls,” Mathematics and Computers in 

Simulation, vol. 163, pp. 47–79, 2019, https://doi.org/10.1016/j.matcom.2019.02.012.  

[23] K. Goel, A. Kumar, and Nilam, “Nonlinear dynamics of a time-delayed epidemic model with two explicit 

aware classes, saturated incidences, and treatment,” Nonlinear Dynamics, vol. 101, no. 3, pp. 1693–1715, 

2020, https://doi.org/10.1007/s11071-020-05762-9.  

[24] S. Feng and Z. Jin, “Infectious Diseases Spreading on an Adaptive Metapopulation Network,” IEEE 

Access, vol. 8, pp. 153425-153435, 2020, https://doi.org/10.1109/ACCESS.2020.3016016.  

[25] A. Dababneh, N. Djenina, A. Ouannas, G. Grassi, I. M. Batiha, and I. H. Jebril, “A New Incommensurate 

Fractional-Order Discrete COVID-19 Model with Vaccinated Individuals Compartment,” Fractal and 

Fractional, vol. 6, no. 8, p. 456, 2022, https://doi.org/10.3390/fractalfract6080456.  

[26] Z.-Y. He, A. Abbes, H. Jahanshahi, N. D. Alotaibi, and Y. Wang, “Fractional-Order Discrete-Time SIR 

Epidemic Model with Vaccination: Chaos and Complexity,” Mathematics, vol. 10, no. 2, p. 165, 2022, 

https://doi.org/10.3390/math10020165. 

[27] D. Ghosh and R. K. De, “Block Search Stochastic Simulation Algorithm (BlSSSA): A Fast Stochastic 

Simulation Algorithm for Modeling Large Biochemical Networks,” IEEE/ACM Transactions on 

Computational Biology and Bioinformatics, vol. 19, no. 4, pp. 2111-2123, 2022, 

https://doi.org/10.1109/TCBB.2021.3070123.  

[28] Z. Shen, Y. Chu, M.  Khan, S. Muhammad, O.  Al-Hartomy, and M. Higazy, “Mathematical modeling 

and optimal control of the COVID-19 dynamics,” Results in Physics, vol. 31, p. 105028, 2021, 

https://doi.org/10.1016/j.rinp.2021.105028.  

[29]  S. Elwefati, A. Abougarair and M. Bakush, “Control of Epidemic Disease Based Optimization 

Technique,” 2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and 

Techniques of Automatic Control and Computer Engineering MI-STA, pp. 52-57, 2021, 

https://doi.org/10.1109/MI-STA52233.2021.9464453.  

[30] M. Sen and A. Ibeas, “On an Sir Epidemic Model for the COVID-19 Pandemic and the Logistic 

Equation,” Discrete Dynamics in Nature and Society, vol. 2020, pp. 1–17, 2020, 

https://doi.org/10.1155/2020/1382870.  

[31] N. Semendyaeva, M. Orlov, R. Tang, and Y. Enping, “Analytical and Numerical Investigation of the SIR 

Mathematical Model,” Computational Mathematics and Modeling, vol. 33, pp. 284-299, 2023, 

https://doi.org/10.1007/s10598-023-09572-7.  

[32] A. J. Abougarair, “Adaptive Neural Networks Based Optimal Control for Stabilizing Nonlinear System,” 

2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of 

Automatic Control and Computer Engineering (MI-STA), pp. 141-148, 2023, https://doi.org/10.1109/MI-

STA57575.2023.10169340.  

[33] H. Khodabandehlou and M. Fadali, “Nonlinear System Identification using Neural Networks and 

Trajectory-based Optimization,” Proceedings of the 16th International Conference on Informatics in 

Control, Automation and Robotics, vol. 1, pp. 579-586, 2019, 

https://doi.org/10.5220/0007772605790586.  

[34] A. Abougarair, “Neural Networks Identification and Control of Mobile Robot Using Adaptive Neuro 

Fuzzy Inference System,” Proceedings of the 6th International Conference on Engineering & MIS 2020, 

vol. 1, pp. 579-586, 2020, https://doi.org/10.1145/3410352.3410734.  

[35] C. Liu, P. Chen, Q. Jia, and L. Cheung, “Effects of Media Coverage on Global Stability Analysis and 

Optimal Control of an Age-Structured Epidemic Model with Multi-Staged Progression,” Mathematics, 

vol. 10, no. 15, p. 2712, 2022, https://doi.org/10.3390/math10152712.  

[36] A. Abougarair, “Optimal Control Synthesis of Epidemic Model,”  IJEIT International Journal on 

Engineering and Information Technology,” vol. 8, no. 2, pp. 109-115, 2022, 

http://ijeit.misuratau.edu.ly/number-01-december-2022/.  

https://doi.org/10.1016/j.matcom.2019.02.012
https://doi.org/10.1007/s11071-020-05762-9
https://doi.org/10.1109/ACCESS.2020.3016016
https://doi.org/10.3390/fractalfract6080456
https://doi.org/10.3390/math10020165
https://doi.org/10.1109/TCBB.2021.3070123
https://doi.org/10.1016/j.rinp.2021.105028
https://doi.org/10.1109/MI-STA52233.2021.9464453
https://doi.org/10.1155/2020/1382870
https://doi.org/10.1007/s10598-023-09572-7
https://doi.org/10.1109/MI-STA57575.2023.10169340
https://doi.org/10.1109/MI-STA57575.2023.10169340
https://doi.org/10.5220/0007772605790586
https://doi.org/10.1145/3410352.3410734
https://doi.org/10.3390/math10152712
http://ijeit.misuratau.edu.ly/number-01-december-2022/


ISSN 2775-2658 
International Journal of Robotics and Control Systems 

802 
Vol. 3, No. 4, 2023, pp. 780-803 

 

 

Ahmed J. Abougarair (Identification and Control of Epidemic Disease Based Neural Networks and Optimization 

Technique) 

 

[37] S. Margenov, N. Popivanov, I. Ugrinova, and T. Hristov, “Mathematical Modeling and Short-Term 

Forecasting of the COVID-19 Epidemic in Bulgaria: SEIRS Model with Vaccination,” Mathematics, vol. 

10, no. 15, p. 2570, 2022, https://doi.org/10.3390/math10152570.  

[38] C. Hsu and J. Lin, “Stability of traveling wave solutions for a spatially discrete SIS epidemic model,” 

Zeitschrift für angewandte Mathematik und Physik, vol. 70, no. 2, 2019, https://doi.org/10.1007/s00033-

019-1107-1.  

[39] N. Abuelezam, I. Michel, B. D. Marshall, and S. Galea, “Accounting for historical injustices in 

mathematical models of infectious disease transmission: An analytic overview,” Epidemics, vol. 43, p. 

100679, 2023, https://doi.org/10.1016/j.epidem.2023.100679.  

[40] J. Giral-Barajas, C. I. Herrera-Nolasco, M. A. Herrera-Valdez, and S. I. López, “A probabilistic approach 

for the study of epidemiological dynamics of infectious diseases: Basic model and properties,” Journal 

of Theoretical Biology, vol. 572, p. 111576, 2023, https://doi.org/10.1016/j.jtbi.2023.111576.   

[41] M. Zhang and L. Zhang, “An optimal control problem for a biological population model with diffusion 

and infectious disease,” European Journal of Control, vol. 72, p. 100821, 2023, 

https://doi.org/10.1016/j.ejcon.2023.100821.  

[42] A. Kumar, A. Gupta, U. Dubey, and B. Dubey, “Stability and bifurcation analysis of an infectious disease 

model with different optimal control strategies,” Mathematics and Computers in Simulation, vol. 213, pp. 

78–114, 2023, https://doi.org/10.1016/j.matcom.2023.05.024.  

[43] P. Jia, J. Yang, and X. Li, “Optimal control and cost-effective analysis of an age-structured emerging 

infectious disease model,” Infectious Disease Modelling, vol. 7, no. 1, pp. 149-169, 2022, 

https://doi.org/10.1016/j.idm.2021.12.004.  

[44] K. Guo et al., “Traffic Data-Empowered XGBoost-LSTM Framework for Infectious Disease Prediction,” 

IEEE Transactions on Intelligent Transportation Systems, pp. 1-12, 2022, 

https://doi.org/10.1109/TITS.2022.3172206.  

[45] S. Akbarian et al., “A Computer Vision Approach to Identifying Ticks Related to Lyme Disease,” IEEE 

Journal of Translational Engineering in Health and Medicine, vol. 10, pp. 1-8, 2022,  

https://doi.org/10.1109/JTEHM.2021.3137956.  

[46] M. Saeed, M. Ahsan, A. Mehmood, M. Saeed, and J. Asad, “Infectious Diseases Diagnosis and Treatment 

Suggestions Using Complex Neuromorphic Hyper Soft Mapping,” IEEE Access, vol. 9, p. 146730-

146744, 2021, https://doi.org/10.1109/ACCESS.2021.3123659.  

[47] M. Kröger and R. Schlickeiser, “Analytical solution of the SIR-model for the temporal evolution of 

epidemics. Part A: time-independent reproduction factor,” Journal of Physics A: Mathematical and 

Theoretical, vol. 53, no. 50, p. 505601, 2020, https://doi.org/10.1088/1751-8121/abc65d.  

[48] M. Kröger, M. Turkyilmazoglu, and R. Schlickeiser, “Explicit formulae for the peak time of an epidemic 

from the SIR model. Which approximant to use?,” Physica D. Nonlinear Phenomena, vol. 425, p. 132981, 

2021,  https://doi.org/10.1016/j.physd.2021.132981.  

[49] S. Mungkasi, “Improved Variational Iteration Solutions to the SIR Model of Dengue Fever Disease for 

the Case of South Sulawesi,” Journal of Mathematical and Fundamental Sciences, vol. 52, no. 3, pp. 

297–311, 2020, https://doi.org/10.5614/j.math.fund.sci.2020.52.3.4.  

[50] A. Abougarair, M. Ellafi, A. Ma'arif, and O. Salih, “Analysis of Mobile Accelerometer Sensor Movement 

Using Machine Learning Algorithm,” IEEE 3rd International Maghreb Meeting of the Conference on 

Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), pp. 46-51, 2023, 

https://doi.org/10.1109/MI-STA57575.2023.10169214.  

[51] D. Cui, W. Zou, J. Guo, and Z. Xiang, “Neural network-based adaptive finite-time tracking control of 

switched nonlinear systems with time-varying delay,” Applied Mathematics and Computation, vol. 428, 

p. 127216, 2022,  https://doi.org/10.1016/j.amc.2022.127216.  

[52] A. S. Elmulhi and A. J. Abougarair, “Sliding Mode Control for the Satellite with the Influence of Time 

Delay,” 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques 

of Automatic Control and Computer Engineering (MI-STA), pp. 77-82, 2023, https://doi.org/10.1109/MI-

STA57575.2023.10169804.  

https://doi.org/10.3390/math10152570
https://doi.org/10.1007/s00033-019-1107-1
https://doi.org/10.1007/s00033-019-1107-1
https://doi.org/10.1016/j.epidem.2023.100679
https://doi.org/10.1016/j.jtbi.2023.111576
https://doi.org/10.1016/j.ejcon.2023.100821
https://doi.org/10.1016/j.matcom.2023.05.024
https://doi.org/10.1016/j.idm.2021.12.004
https://doi.org/10.1109/TITS.2022.3172206
https://doi.org/10.1109/JTEHM.2021.3137956
https://doi.org/10.1109/ACCESS.2021.3123659
https://doi.org/10.1088/1751-8121/abc65d
https://doi.org/10.1016/j.physd.2021.132981
https://doi.org/10.5614/j.math.fund.sci.2020.52.3.4
https://ieeexplore.ieee.org/abstract/document/10169214/
https://ieeexplore.ieee.org/abstract/document/10169214/
https://doi.org/10.1109/MI-STA57575.2023.10169214
https://doi.org/10.1016/j.amc.2022.127216
https://doi.org/10.1109/MI-STA57575.2023.10169804
https://doi.org/10.1109/MI-STA57575.2023.10169804


803 
International Journal of Robotics and Control Systems 

ISSN 2775-2658 
Vol. 3, No. 4, 2023, pp. 780-803 

  

 

Ahmed J. Abougarair (Identification and Control of Epidemic Disease Based Neural Networks and Optimization 

Technique) 

 

[53] A. Abougarair and  A. Elmulhi, “Robust control and optimized parallel control double loop design for 

mobile robot,” International Journal of Robotics and Automation (IJRA), vol. 9, pp. 160-170, 2020. 

https://doi.org/10.11591/ijra.v9i3.pp160-170.  

[54] Y. Qiu, Y. Li, and Z. Wang, “Robust Near-optimal Control for Constrained Nonlinear System via Integral 

Reinforcement Learning,” International Journal of Control Automation and Systems, vol. 21, no. 4, pp. 

1319–1330, 2023,  https://doi.org/10.1007/s12555-021-0674-z.  

[55] P. Subbash and K. T. Chong, “Adaptive network fuzzy inference system-based navigation controller for 

mobile robot,” Frontiers of Information Technology & Electronic Engineering, vol. 20, no. 2, pp. 141-

151, 2019, https://doi.org/10.1631/FITEE.1700206.  

[56] C. J. Luis Pérez, “A Proposal of an Adaptive Neuro-Fuzzy Inference System for Modeling Experimental 

Data in Manufacturing Engineering,” Mathematics, vol. 8, no. 9, p. 1390, 2020, 

https://doi.org/10.3390/math8091390.  

[57] A. Abougarair, N. Shashoa, and M. Aburakhis, “Performance of Anti-Lock Braking Systems Based on 

Adaptive and Intelligent Control Methodologies,” Indonesian Journal of Electrical Engineering and 

Informatics (IJEEI), vol. 10, no. 3, 2022, https://doi.org/10.52549/ijeei.v10i3.3794.  

[58] M. Barro, A. Guiro, and D. Ouedraogo, “Optimal control of a SIR epidemic model with general incidence 

function and a time-delays,” Cubo (Temuco), vol. 20, no. 2, pp. 53–66, 2018, 

https://doi.org/10.4067/S0719-06462018000200053.  

[59] F. Shults and W. Wildman, “Human Simulation and Sustainability: Ontological, Epistemological and 

Ethical Reflections,” Sustainability, vol. 12, no. 23, p. 10039, 2020, 

https://doi.org/10.3390/su122310039.  

[60] A. Ma’arif, M. Antonio, M. Sadek, E. Umoh, and A. Abougarair, “Sliding Mode Control Design for 

Magnetic Levitation System”, Journal of Robotics and Control (JRC), vol. 3, no 6, pp. 848-853, 2022, 

https://doi.org/10.18196/jrc.v3i6.12389.  

[61] A. J. Abougarair and N. A. A.  Shashoa, “Model Reference Adaptive Control for Temperature Regulation 

of Continuous Stirred Tank Reactor,” 2021 IEEE 2nd International Conference on Signal, Control and 

Communication (SCC), pp. 276-281, 2021,  https://doi.org/10.1109/SCC53769.2021.9768396.  

https://www.researchgate.net/profile/Ahmed-Abougarair/publication/341426788_Robust_control_and_optimized_parallel_control_double_loop_design_for_mobile_robot/links/5ebfbfe5a6fdcc90d67a411f/Robust-control-and-optimized-parallel-control-double-loop-design-for-mobile-robot.pdf
https://www.researchgate.net/profile/Ahmed-Abougarair/publication/341426788_Robust_control_and_optimized_parallel_control_double_loop_design_for_mobile_robot/links/5ebfbfe5a6fdcc90d67a411f/Robust-control-and-optimized-parallel-control-double-loop-design-for-mobile-robot.pdf
https://doi.org/10.11591/ijra.v9i3.pp160-170
https://doi.org/10.1007/s12555-021-0674-z
https://doi.org/10.1631/FITEE.1700206
https://doi.org/10.3390/math8091390
https://doi.org/10.52549/ijeei.v10i3.3794
https://doi.org/10.4067/S0719-06462018000200053
https://doi.org/10.3390/su122310039
https://doi.org/10.18196/jrc.v3i6.12389
https://doi.org/10.1109/SCC53769.2021.9768396

