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1. Introduction  

Chaos, a nonlinear phenomenon observed in a class of dynamic systems, has recently garnered 

significant research interest due to its expanding applications in both real-world and hypothetical 

scenarios. These applications span a wide spectrum, encompassing secure communication [1], 

navigation systems [2], robotics [3], and power system dynamics [4]. Over the last decade, the 

literature has seen the emergence of various chaotic systems with diverse dimensions and unique 

characteristics, ranging from three-dimensional systems [5], four-dimension [6], five-dimension [7], 

six-dimension [8], seven-dimension [9]-[11], to even higher-dimensional counterparts [12]. 

However, the utility of chaotic systems is greatly enhanced when they can be controlled. 

Consequently, researchers have adopted various control strategies tailored to systems of different 

dimensions. These strategies encompass feedback control [13], [14], adaptive control [15], passive 
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control [16], sliding mode control, and active control [17], among others. Among the intriguing 

phenomena associated with chaotic systems is synchronization, where the dynamics of two chaotic 

systems, whether identical or non-identical, are coupled through appropriate control laws within 

finite time. Numerous synchronization schemes have been developed to facilitate this coupling, 

including adaptive control-based synchronization [18], adaptive hybrid synchronization [19], 

functional projective synchronization [20], and sliding mode control-based synchronization [21], 

[22], fuzzy synchronization [23], invariant ellipsoids method [24]. Each scheme serves specific 

purposes in different contexts and applications. In this study, we delve into the synchronization of 

two particular chaotic systems: the Rabinovich chaotic system [25]-[27], and the Rabinovich-

Fabrikant system [28]. These systems, characterized by sets of three-coupled differential equations, 

possess unique properties that have attracted significant attention in diverse fields, such as image 

encryption, power system dynamics, and control. The Rabinovich-Fabrikant system, in particular, is 

renowned for its complexity owing to the presence of quadratic and cubic terms [29], making it a 

subject of extensive analysis and exploration [30]-[32]. 

In the following sections, we will focus on the finite-time synchronization of these intriguing 

chaotic systems, presenting our approach and numerical findings. This study aims to contribute to 

the understanding of chaos synchronization, with practical implications in various interdisciplinary 

domains. 

2. Dynamics of the Rabinovich and Rabinovich-Fabrikant Systems 

2.1. Rabinovich System 

The architecture of the Rabinovich system consists of a set of first-order, three-coupled ordinary 

differential equations given by 

 𝑥1̇ = −𝑎𝑥1 + 𝑏𝑥2 + 𝑥2𝑥3 

𝑥2̇ = 𝑐𝑥1 − 𝑑𝑥2 − 𝑥1𝑥3 

𝑥3̇ = −𝑒𝑥3 + 𝑥1𝑥2 

(1) 

where 𝑎, 𝑏, 𝑐, 𝑑, and 𝑒 > 0  are positive parameters, whose values determines the type of attractor 

that is evolved, and 𝑥 ∈ [𝑥1, 𝑥2, 𝑥3] are the state variables that gives the order of the system. When 

𝑎 = 4, 𝑏 = 6.75, 𝑐 = 6.75, 𝑑 = 1, 𝑒 = 1, the Rabinovich system evolves the attractors shown in 

Fig. 1.  

   

Fig. 1. Chaotic attractors of the Rabinovich system - I 

When the parameters are changed to the following, 𝑎 = 1.5, 𝑏 = 0.04, 𝑐 = 0.04, 𝑑 =
−0.3, 𝑒 = 1.67,  a distinct set of attractors are evolved as shown in Fig. 2. 

   

Fig. 2. Chaotic attractors of the Rabinovich system - II 
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2.2. The Rabinovich – Fabrikant System 

The Rabinovich-Fabrikant system consists of a set of three-coupled differential equations 

represented by 

  
𝑦1̇ = 𝑦2(𝑦3 − 1 + 𝑦1

2) + 𝛿𝑦1 

𝑦2̇ = 𝑦1(3𝑦3 + 1 − 𝑦1
2) + 𝛽𝑦2 

𝑦3̇ = −2𝑦3(𝜑 + 𝑦1𝑦2) 

(2) 

Where 𝛿, 𝛽, 𝜑 > 0  are parameters and 𝑦 ∈ [𝑦1, 𝑦2, 𝑦3] are the state variables. When  𝛿 =
−1.0, 𝛽 = −1.0, 𝜑 = −0.2, the Rabinovich-Fabrikant system evolves the attractors shown in Fig. 

3.  

 

Fig. 3. Chaotic attractors of the Rabinovich – Fabrikant system - I 

When  𝛿 = 0.87, 𝛽 = 0.87, 𝜑 = 1.1  the Rabinovich-Fabrikant system evolves the attractors 

shown in Fig. 4. 

 

Fig. 4. Chaotic attractors of the Rabinovich – Fabrikant system - II 

3. Summarization of the Finite-Time Control Scheme 

Conceptually, two identical or non-identical chaotic systems are said to synchronize in finite 

time, when for a given initial conditions, their coupling trajectories settle uniformly after a specified 

time. Finite-time synchronization is essential for time-critical applications to avoid overshoots and 

other undesirable consequences [33]. Finite-time schemes are realized with the application of 

Lyapunov stability criteria in conjunction with definitions and lemmas. In recent years, finite-time 

control and synchronization schemes have attracted much attention they have been applied to the 

synchronization of chaotic systems with different dimensions and uncertainties [34]-[36], coronary 

artery chaotic systems [37], memristor chaotic systems [38] and hyperchaotic systems [33] amongst 

others. In this section, we summarized a body of definitions and lemmas suitable for the 

synchronization of the Rabinovich and Rabinovich-Fabrikant systems. 

Definition 1 [39], [40]. The origin of (1) is a finite-time stable equilibrium if the origin is 

Lyapunov stable and there exist a function 𝑇: ℜ𝑛 → ℜ+ called the settling time function, such that 

for every 𝑥0 ∈ ℜ𝑛
, the solution 𝑥(𝑡, 𝑥0) of (1) is defined on [0, 𝑇(𝑥0), 𝑥(𝑡, 𝑥0) ∈ ℜ𝑛  ∀𝑡 ∈

[0, 𝑇(𝑥0)]] and lim
𝑡→𝑇(𝑥0)

𝑥(𝑡, 𝑥0) = 0. 

Lemma 1 [41], [42]. If there exist a differential and continuous positive definite function 

𝑉(𝑡): ℜ𝑛 → ℜ𝑛, such that  𝑉(𝑥(𝑡)) → ∞ as 𝑥(𝑡) → ∞ ) and satisfies the following differential 

inequality: 
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 𝑉(𝑡) ≤ −𝜒(𝑉(𝑡))
𝜙

,       ∀𝑡 ≥ 0,         𝑇 ≥ 𝑡0,          𝑉(𝑡0) ≥ 0, (3) 

Where 𝜒 > 0  and   0 < 𝜙 < 1  are two positive numbers. For any  𝑡0, 𝑉(𝑡) satisfies the inequality: 

 𝑉1−𝜙(𝑡) ≤ 𝑉1−𝜙(𝑡0) − 𝜒(1 − 𝜙)(𝑡 − 𝑡0), 𝑡0,                 𝑡0 ≤ 𝑡 ≤ 𝑇 (4) 

And 𝑉(𝑡) ≡ 0, ∀𝑡 ≥ 𝑇. Thus, the origin of (1) is globally stable in finite time, and the settling time 

T is given as: 

 
𝑇 ≤ 𝑡0 +

𝑉1−𝜙(𝑡0)

𝜒(1 − 𝜙)
 (5) 

Assumption 1: [43], [44]. Assume 𝜉1, 𝜉2, … , 𝜉𝑛 ∈ 𝑅𝑛  and 0 < 𝛾 < 1  are all real numbers. Then 

the following inequality holds: 

 (|𝜉1| + |𝜉2| + ⋯ + |𝜉𝑛|)𝛾 ≤ |𝜉1|𝛾 + |𝜉2|𝛾 + ⋯ + |𝜉𝑛|𝛾 (6) 

Definition 2: If system (1) and (2) are master and slave chaotic systems respectively, and 

𝑒𝑖=𝑦𝑖 − 𝑥𝑖 (𝑖 = 1, 2, 3), are synchronization error functions, then (1) and (2) can achieve finite-time 

synchronization, if there exists a settling time 𝑇(𝑒𝑖(0)) > 𝑡0, such that  lim
𝑡→𝑇

|𝑒𝑖| = 0 and |𝑒𝑖| ≡ 0, for 

𝑡 > 𝑇 for any initial conditions 𝑥1(0), 𝑥2(0), 𝑥3(0) ≠ 𝑦1(0), 𝑦2(0), 𝑦3(0).  

3.1. Architecture of the Finite-Time Synchronization Scheme 

The architecture of the proposed Finite-time synchronization scheme is shown in Fig. 5. 

 

Fig. 5. Architecture of the Finite Time Synchronization scheme 

The master chaotic system is the Rabinovich system which is used to drive the slave system. 

The slave chaotic system is the Rabinovich Fabrikant system that is controlled to couple the dynamics 

of the two systems. The synchronization error system is used to track the dynamics of the master and 

slave systems to bring them into a state of synchrony in finite time. The parameter vector are the 

parameters whose values evolves the set of attractors. The finite time control laws are the set of 

functions based on the Lyapunov stability criteria that provides the sufficient conditions to couple 

the dynamics of the chaotic systems in finite time. The signum function and non-negative indices 

constitutes the weighted parameters that constrains overshoots of the asymptotically stable coupled 

dynamics to keep them within the finite time. The synchronization error dynamics of the systems (1) 

and (2) using the Definition 2 is given by 

 �̀�1 = −𝑎𝑒1 − 𝑒2 + (𝑎 + 𝛿)𝑥1 + (1 + 𝑏)𝑦2 − 𝑥1𝑥3 + 𝑦2𝑦1
2 + 𝑦2𝑦3 + 𝑢𝑒1 

�̀�2 = 𝛽𝑦2 + (𝛽 + 𝑑)𝑥2 + 𝑥1 − 𝑐𝑒2 + 𝑑𝑒2 − 𝑥1𝑥3 + 3𝑦1𝑦3 − +𝑦1
3 + 𝑢𝑒2 

�̀�3 = −2𝛾𝑒3 − (2𝛾 − 𝑒)𝑦3 − 𝑥1𝑥2 − 2𝑦1𝑦2𝑦3 + 𝑢𝑒3 

(7) 

Where 𝑢𝑒𝑖 are vectors of the associate control laws of the synchronization error system, and are given 

by 
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 𝑢𝑒1 = 𝑎𝑒1 + 𝑒2 − (𝑎 + 𝛿)𝑥1 − (1 + 𝑏)𝑦2 + 𝑥1𝑥3 − 𝑦2𝑦1
2 − 𝑦2𝑦3 

𝑢𝑒2 = −𝛽𝑦2 − (𝛽 + 𝑑)𝑥2 − 𝑥1 + 𝑐𝑒2 − 𝑑𝑒2 + 𝑥1𝑥3 − 3𝑦1𝑦3 + 𝑦1
3 

𝑢𝑒3 = 2𝛾𝑒3 + (2𝛾 − 𝑒)𝑦3 + 𝑥1𝑥2 + 2𝑦1𝑦2𝑦3 

(8) 

We proposed a global finite-time control law that combines the associate control laws and 

control strength coefficients that comprise weighted parameters signum functions and non-negative 

indices and given by 

 𝑈𝑖 = 𝑢𝑒𝑖 − Π𝑈𝑖

𝜇
sgn(𝑒𝑖)|𝑒𝑖|𝜇 (9) 

Where  Π𝑈𝑖

𝜇
 are control strength coefficients, 𝜇 is non-negative index and sgn is a Signum function 

and 𝑒𝑖 has been defined in Definition 2. By replacing  𝑢𝑒𝑖 in (7) with (9) and using (8), results in the 

following 

 �̀�1 = −Π𝑈1

𝜇
sgn(𝑒1)|𝑒1|𝜇 

�̀�2 = −Π𝑈2

𝜇
sgn(𝑒2)|𝑒2|𝜇 

�̀�3 = −Π𝑈3

𝜇
sgn(𝑒3)|𝑒3|𝜇 

(10) 

Theorem. The dynamics of the master chaotic system (1) and the controlled slave chaotic system 

(2) can be synchronized in finite time, if the proposed global finite-time controller given by (9) is 

applied. Proof: Consider the quadratic Lyapunov function candidate. 

 

𝑉𝑒(𝑡) = ∑
1

2

3

𝑖=1

𝑒𝑖
2 (11) 

The time derivative of (10) along the trajectories of (7) is given by 

 𝑉�̇�(𝑡) = 𝑒1�̇�1 + 𝑒2�̇�2 + 𝑒3�̇�3 (12) 

Using (10) in (12) results in the following 

 𝑉�̇�(𝑡) = 𝑒1(−Π𝑈1

𝜇
sgn(𝑒1)|𝑒1|𝜇) + 𝑒2(−Π𝑈2

𝜇
sgn(𝑒2)|𝑒2|𝜇) + 𝑒3(−Π𝑈3

𝜇
sgn(𝑒3)|𝑒3|𝜇) 

= −Π𝑈1

𝜇
sgn(𝑒1)|𝑒1|𝜇𝑒1 − Π𝑈2

𝜇
sgn(𝑒2)|𝑒2|𝜇𝑒2 − Π𝑈3

𝜇
sgn(𝑒3)|𝑒3|𝜇𝑒3 

(13) 

By using the convention: 

 
sgn(𝑒𝑖) =

|𝑒𝑖|

𝑒𝑖
, sgn(𝑒𝑖)|𝑒𝑖|𝜇 ⟺

𝑒𝑖|𝑒𝑖|

𝑒𝑖
= |𝑒𝑖|, 𝑒𝑖sgn(𝑒𝑖)|𝑒𝑖|𝜇 ⟺ |𝑒𝑖|1+𝜇 (14) 

Inserting (14) into (13) gives 

 𝑉�̇�(𝑡) = −Π𝑈1

𝜇 |𝑒1|1+𝜇 − Π𝑈2

𝜇 |𝑒2|1+𝜇 − Π𝑈3

𝜇 |𝑒3|1+𝜇 ≤ 0 (15) 

Eq. (15) is negative-definite in ℝ3. Thus Lemma 1 is satisfied, which implies that the 

synchronization error system (7) can be uniformly asymptotically stabilized in finite time while 

simultaneously synchronizing the dynamics of the master and slave chaotic systems. If the control 

strength coefficients are set to  Π𝑈1

𝜇
= Π𝑈2

𝜇
= Π𝑈3

𝜇
= Π𝑈𝐺

𝜇
, where “G” is a prefix for global control 

strength coefficient, then (15) reduces to 
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𝑉�̇�(𝑡) = − ∑ Π𝑈𝐺

𝜇 |𝑒𝑖|1+𝜇

3

𝑖=1

 (16) 

Based on Assumption 1,  

 

∑ Π𝑈𝐺

𝜇 |𝑒𝑖|1+𝜇

3

𝑖=1

≥ (∑ 𝑒𝑖
2

3

𝑖=1

)

1+𝜇
2

= ‖𝑒‖1+𝜇 (17) 

By virtue of Assumption 1,  

 𝑉�̇�(𝑡) ≤ −Π𝑈𝐺

𝜇 ‖𝑒‖1+𝜇 = Π𝑈𝐺

𝜇
(‖𝑒‖2)1+𝜇 

≤ −2
1+𝜇

2 Π𝑈𝐺

𝜇
(

‖𝑒‖2

2
)

1+𝜇
2

= −2
1+𝜇

2 Π𝑈𝐺

𝜇
𝑉

1+𝜇
2  

(18) 

According to Lemma 1, the two chaotic systems, the time of synchronization is estimated as 

 

𝑇 ≤
(𝑉(𝑡0))

1−𝜇
2

2
1−𝜇

2 Π𝑈𝐺

𝜇 (1 − 𝜇)
 (19) 

Overall, the negative-definiteness of the partial derivative of the Lyapunov function along the 

trajectories of the coupling systems proves that the proposed control laws can synchronize the 

systems in finite time.   

4. Result and Discussion 

Few cases which comprise the coupling of the master and slave systems for different parameter 

sets were explored to test the robustness of the synchronization scheme. When the Master system: 

𝑎 = 4, 𝑏 = 6.75, 𝑐 = 6.75, 𝑑 = 1, 𝑒 = 1  and Slave system: 𝛿 = 0.87, 𝛽 = 0.87, 𝜑 = 1.1 , the plots 

are shown in Fig. 6. 

   
(a) (b) (c) 

Fig. 6. Synchronized dynamics of the state variables 

Fig. 6 (a), (b) and (c) depicts the synchronization of the dynamics of the master ad slave system. 

it can be seen that the trajectories coupled in less than 0.002s. these are relatively fast. The stabilized 

dynamics of the synchronization error functions and the finite time control law are shown in Fig. 7 

and Fig. 8 respectively. 
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Fig. 7. Stabilized dynamics of the synchronization error functions 

 

Fig. 8. Stabilized dynamics of the finite-time control laws 

In finite time control scheme, stabilized dynamics of the finite-time control laws and 

synchronization error functions are sufficient proof of the viability of a proposed control architecture. 

Thus, Fig. 7 and Fig. 8 confirmed the effectiveness of the proposed synchronization architecture. 

There was no significant difference in the synchronized dynamics of the master and slave systems 

for other parameters and initial conditions because all the varied parameters. Thus, the finite-time 

synchronization scheme is robust in the face of parametric disturbances. 

5. Conclusion 

A finite-time synchronization scheme was proposed to couple two non-identical chaotic 

systems. the dynamics of the two systems are highly sensitive to initial conditions and parameter 

variations. We derived a set of control laws that coupled the dynamics of the two systems, based on 

Lyapunov stability criteria. Robustness to parameter variations is an indication of effectiveness of 

the scheme. To examined the robustness of the synchronization scheme, the system parameters and 

initial conditions were varied. The results shows that the variations in system parameters had no 

noticeable impact on the synchronization time. It was observed that the signum function and non-

negative indices played a crucial role in accelerating the synchronization process and preventing 

overshoots. The higher the non-negative index, the shorter the synchronization time. 
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