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1. Introduction  

Real-time monitoring and data collection of water surfaces play a pivotal role in enabling 

sophisticated data analysis within unfamiliar environments. This necessitates the observation of object 

detection, encompassing the identification of material objects, recognition and classification of rapid-
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 The rapid advancement and increasing demand for Unmanned Surface 

Vehicle (USV) technology have drawn considerable attention in various 

sectors, including commercial, research, and military, particularly in 

marine and shallow water applications. USVs have the potential to 

revolutionize monitoring systems in remote areas while reducing labor 

costs. One critical requirement for USVs is their ability to autonomously 

integrate Guidance, Navigation, and Control (GNC) technology, enabling 

self-reliant operation without constant human oversight. However, current 

study for USV shown the use of traditional method using color detection 

which is inadequate to detect object with unstable lighting condition. This 

study addresses the challenge of enabling Autonomous Surface Vehicles 

(ASVs) to operate with minimal human intervention by enhancing their 

object detection and classification capabilities. In dynamic environments, 

such as water surfaces, accurate and rapid object recognition is essential. 

To achieve this, we focus on the implementation of deep learning 

algorithms, including the YOLO algorithm, to empower USVs with 

informed navigation decision-making capabilities. Our research 

contributes to the field of robotics by designing an affordable USV 

prototype capable of independent operation characterized by precise object 

detection and classification. By bridging the gap between advanced 

visualization techniques and autonomous USV technology, we envision 

practical applications in remote monitoring and marine operations with 

object detection. This paper presents the initial phase of our research, 

emphasizing significance of deep learning algorithms for enhancing USV 

navigation and decision-making in dynamic environmental conditions, 

resulting in mAP of 99.51%, IoU of 87.80%, error value of the YOLOv4-

tiny image processing algorithm is 0.1542. 
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moving objects, and determination of water levels and distances to detected objects [1]. The transition 

from digitization to informatization and onward to intelligence characterizes the evolution of data 

collection and interpretation in sampling environments. 

In the realm of water environment monitoring, there is a growing role for vehicles and 

transportation systems embedded with artificial intelligence [2][3][4][5]. Recent advancements in 

machine learning, particularly deep learning approaches, have emerged as potent tools in the 

development of intelligent transportation systems [6][7][8]. These methodologies find application 

across various facets of the maritime industry, encompassing boat classification [9], object detection, 

collision avoidance, risk perception, and anomaly detection. Maritime surveillance and autonomous 

boat navigation stand out as the primary application domains. The deployment of autonomous systems 

holds the potential to rapidly and safely gather environmental information, offering a cost-effective 

alternative to human-led research vessels, especially in remote and inhospitable locations such as the 

Arctic [10]. Therefore, sophisticated information technology such as computer vision [11] system 

should support the intelligent transportation system.  

The role of computer vision is pivotal in analyzing unfamiliar environmental features, bridging 

the realms of robotics and object recognition detection [12]. Computer vision is presently employed 

to enhance image quality and meet the demands of human visual limitations. It empowers computers 

to detect objects within images and determine their precise coordinates, finding diverse applications 

both within and beyond the realm of computer science. Traditional computer vision methods 

frequently utilize color as a means of object detection, employing algorithms like color correction 

[13][14], Hue Saturation Value (HSV) [15][16][17][18][19], Hue, Saturation, and Lightness (HSL) 

[20][21][22], Color Tracking Methods [23], and RGB [24][25]. Within the domain of Unmanned 

Surface Vehicles (USVs) [4][26][27][28][29][30][31][32], object recognition detection has 

predominantly relied on the HSV filter as the primary algorithm. However, color-based detection is 

susceptible to variations in lighting conditions, necessitating a robust solution [33]. This weakness 

may interrupt the system in recognizing the object while the environment lighting is unstable. Thus, 

the use of deep learning method use to enhance object detection precision and speed.  

Few of the traditional deep learning method have been established such as SIFT, SVM and HOG 

to extract feature from images then classifying it. However, target detection algorithm based on 

convolutional neural network impoved to be significantly better in efficiency and accuracy, one of 

which YOLO are one of best develop object detection algorithm [34]. YOLO offers remarkable 

accuracy [28][35]-[39], even in the presence of lighting noise [26][32]. The study focuses on real-time 

obstacle detection, a critical component of USV navigation. 

This paper presents a novel solution, leveraging the You Only Look Once (YOLO) algorithm for 

object recognition on water surfaces, specifically deployed within USVs.  In achieving this goal we 

develops real-time obstacle detection for the USV maneuver. The design and implementation of 

obstacle detection determine the USV directional navigation. The navigation system is a crucial 

direction guide information that determines the coordinate location and confidence value of the object 

that moves the USV actuator to take action based on the detected object.  

The design and implementation of this obstacle detection system play a pivotal role in guiding 

the USV's directional navigation, providing essential coordinate location and confidence values for 

detected objects. The main contribution benefit from this paper are as follows: (1) YOLOv4-tiny 

network was applied as the main algorithm of the object detection which greatly improve the accuracy 

and detection speed of the designated object. (2) Improve dual-hull trajectories and wave resistant 

using combined IMU in navigating in a dynamic environment.c 

In Section 2, we delve into the proposed system design, introducing the YOLO computer vision 

algorithm [34], the used dataset, USV motor and hull robot design, and the navigation system within 

the designated testing area. Section 3 presents results related to the detection of designated objects in 

varying light intensities and discuss the implications of these results for potential applications as an 

unmanned monitoring tool for water surface areas. Finally, in Section 4, we outline future research 

directions and areas for further development. 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

767 
Vol. 3, No. 4, 2023, pp. 765-779 

  

 

Anik Nur Handayani (Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver) 

 

2. Method  

2.1. Object Selection 

The objects used in this study will be classified into three different classifications using the 

YOLO detection algorithm labelled as: Boat 1, Boat 2, and obstacle as in Table 1. Color choosen in 

this study are based on IALA Maritime Buoyage System that shows different color legend for water 

depth information [40] shown in Fig. 1.  

Table 1.  Designated object for research purpose 

Object 
Labelled 

Object 
Object Description 

 

A USV 

 

Boat 1 (B1) 
Boat 1 acts as a foreign Boat, if Boat 2 in frame, then USV 

approached Boat 1 

 

Boat 2 (B2) 
Boat 2 acts as a local Boat, if Boat 1 in frame, then USV avoided 

Boat 2 

 

Obstacle (O) 
Obstacle acts as a buoy in the sea to indicate the depth of the sea 

along with the legend of the sea limit. 

 

Fig. 1. Block diagram of USV navigation decision (a) A approach at B1 (b) A stay beside B2 (c) A avoided 

O 

2.2. Proposed Method 

Data labeling provides a label to the dataset object that carries out the data training process of the 

YOLO Algorithm. This operation uses interlinked terms such as object classification, object 

localization, and recognition. Object classification an object assigned as a class in the existing images 

assigned as labels. Object Localization [41] is a process of locating the object's position in respect of 

x,y coordinates in the images or video assigned as a bounding box. The combination of both process 

object localization and classification is called Object detection. Image labeling is an image annotation 

process for class classification in a text file extension form. The results of the labeled information 

include class, center coordinates of the bounding box (x,y), and  the height and width of the bounding 

box (h,w)—the format used in obtaining object position in an image used YOLO format. Fig. 2 

describes conversing labeling square into YOLO format in a text file. Images can have 2 or more 

classes in one image, adding more than one class in the algorithm containing the class of each 

annotated object.  (Coherence with X,Y revise briefly explain X,Y Formula). 
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Fig. 2. Bounding box coordinate calculation 

The total image retrieval dataset is 3087 images. Based on [42]-[44] the best training and test 

data ratio used is 80% and 20%. The labeling process provides two formats, namely Pascal VOC with 

.xml file output and YOLO with .txt file output. In this research, the YOLO format in LabelImg [45] 

will be used to generate labeling information. The YOLO algorithm uses the results of labeling 

information to process the training stage. Before the training session, settings are configured in the 

Pre-Training Stage. Table 2 shows the object in the test data with 671 images. Ground truth is labeled 

image data to be trained with the YOLO algorithm.  

Table 2.  Total ground-truth in a dataset 

Total Data Types of Data Ground-Truth 

671 

Red Boat 308 

Yellow Boat 219 

Obstacle 180 

 

2.3. YOLO Algorithm Configuration 

Configuring the YOLO network requires an initial set of the configuration file and weight in the 

beginning of the pre-training process. The pre-trained set of weights used is called “yolov4-

tiny.weights”. The initial weights have been trained through the ImageNet dataset and contain an 

entire network structure of the YOLO algorithm. All the general parameters are listed in Table 3. 

Width, and height of the images are set to 416×416, keeping the training time length low. Filters in 

the configuration are adjusted accordingly to the number of classes used in the dataset. Max Batches 

is set as how many iteration running through the training process as referred to the article published 

by Redmon and Fahardi (2018) [46] output layer of the filter follows the equation shown in Table 3.  

Table 3.  Configuration of YOLO parameter  

Parameter Equations Configurated Values 

Classes 𝑁 3 

Batches - 64 

Max Batches 𝑛 × 2000 6000 

Subdivisions - 32 

Width and Height 𝑆 × 32 416×416 

Steps 
80% × 𝑀𝑎𝑥. 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 

90% × 𝑀𝑎𝑥. 𝐵𝑎𝑡𝑐ℎ𝑒𝑠 

4800 

5400 

Filters (𝑛. +.5. ) × 3 24 

Random - 1 

 

Fig. 3 shows the general object detection system. Object detection has two processes: feature 

extraction, classification and localization of an object based on CNN (Convolutional Neural Network). 

The method used is the development of MultiBox with the addition of layers performing parallel 

processes with regression boxes and object classification [23]. 
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Fig. 3.  (a) Raw images used as an input are resized to 416 x 416 x 3, (b) Convolutional layer process, (c) 

Final detection results 

The input image can have an uncertain size. The algorithm has a resize feature according to the 

pre-training parameters set. The resized pixel size in the image is not limited to how many 

measurements as long as the value in the division is 32. In image detection, the image will enter the 

resize first and then be divided into S x S grid cells. Each grid cell has the task of predicting the 

bounding box. Each bounding box contains object information of x,y coordinates, height (h), width 

(w), and the predicted value of the object (confidence score). The threshold is given to eliminate 

bounding boxes that have low accuracy values. Each grid cell will predict a probability class C that 

predicts one object class only despite the number of bounding boxes in the grid cell. The confidence 

score of the detected object uses a formula by multiplying the conditional class C with the confidence 

score of each bounding box generated using the equation (1) [47]. 

 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖|𝑂𝑏𝑗𝑒𝑐𝑡) × 𝑃𝑟(𝑂𝑏𝑗𝑒𝑐𝑡) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑
𝑡𝑟𝑢𝑡ℎ = 𝑃𝑟(𝐶𝑙𝑎𝑠𝑠𝑖) × 𝐼𝑂𝑈𝑝𝑟𝑒𝑑

𝑡𝑟𝑢𝑡ℎ (1) 

2.4. Testing Environment 

In providing a USV that serves as a monitoring robot, this prototype will be implemented in a 

pool with a depth of 4 meters. The resulting data was recorded through live feed camera and connected 

through a remote monitor using a cross-platform screen-sharing system, enabling users to monitor the 

surrounding area remotely and efficiently.  

The lighting environment within the recreational pool may vary depending on the sunlight 

throughout the day. Environment used for the testing condition are outdoor which deliberately effect 

how object detection capture the detected object. Tested have been done within three different 

daytime: (1) Morning (07:00 – 10.00). (2) Afternoon (10:00-13:00). (3) Evening (13:00-16:00). 

2.5. USV Design 

High-speed USV is crucial in determining research performance, especially in the preliminary 

design stages. Preliminary design determines specific hull types used and performance comparison 

between different hull types. USV design should overlook the following components [48]: viscous 

resistance, wave making resistance, and body form resistance which consists of pressure drag. The 

ability to move the USV with many advantages and performance is a must in facing the uncertainty 

of the environment. Therefore, a new type of marine robot USV design is proposed in this study. 
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Comparisons to conventional monohull design are used concerning catamaran USV to understand 

better the performance characteristics of the proposed design [49][50]:  

● Better ability in seakeeping. One of the most significant performance abilities is using catamaran 
USV design using rocking motion in cutting wind and waves while sailing. The complex design 
of the catamaran boat allows for better performance when navigating in the waves with a minor 
rocking motion than the monohull design. 

● Better hydrostatic resistance performance. Compared to monohull, catamaram have better 
hydrostatic resistance due to the displacement of the catamaram, mainly on the main body 
deeper from the water surface. This contributes in reducing the waterline and wave resistance 
on the water surface.  

● Stable stability and rotation performance. Due to the longer design of the two propellers inside 
the USV enables good steering when taking turns in avoiding obstacles compared to monohull 
design. Furthermore, the large surface help in minimizing the USV from overturning  

● Large surface area. Since the USV carry out multiple sensors and missions loads to perform 
certain task, large surface area to carry all the equipment need to be in demand and catamaram 
model design satisfied the needs of it.  

Based on several consideration advantages offered, the catamaran design is used in this study. 

Two propellers are installed within the two hulls of the catamaran ship: the right propeller and the left 

propeller. Bridges are added between two hulls to load components and sensors, along with a brushless 

motor for each propeller. In order to monitor the surrounding environment, web-camera is placed on 

top of the USV. In Fig. 4 The catamaran USV has the advantage of navigating through waves in the 

water surface, with the efficient operation and low cost offered. The easiness of the catamaran boat 

can be used for monitoring, search and rescue, and navigation. 

 

Fig. 4. Upper view of the catamaran USV  

2.6. Maneuver 

The actuators of the USV in this study are brushless motors and servos. The brushless motor is 

the rate driver of the USV while the servo is used to adjust the angle of the turning direction of the 

USV. Fig. 5 is an illustration of the direction of the USV. 

 𝑥 𝑐𝑒𝑛𝑡𝑒𝑟 =  𝑥 + (𝑤/2)/2 (2) 

 𝑦 𝑐𝑒𝑛𝑡𝑒𝑟 =  𝑦 + (ℎ/2)/2 (3) 
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Fig. 5. Robot boat navigation servo degree 

The actuator is driven by Arduino while Jetson Nano is used as a microprocessor in the image 

detection process using a webcam camera. Fig. 6 shows all the components used in this research. 

 

Fig. 6.  (a) Jetson Nano (b) Arduino NANO (c) Servo Motor (d) ESC Motor (e) Brushless Motor 

Motor navigation on the USV uses the division of several areas on the frame to determine the 

direction of the servo as a turning angle. The result of reading the coordinates of the frame through 

the object detection system determines the turning angle and motion of the motor when it is far and 

near from the detected object. Fig. 7 illustrates the area division of the frame for motor navigation. 

There are 6 areas divided in one frame, namely: (1) Far Left, (2) Far Center, (3) Far Right, (4) Near 

Left (5) Near Center, (6) Near Right. The camera pixel size used is 640 x 480 pixels with the division 

of each area worth one-third of the pixel length and two-thirds of the width for long distance 

classification. 

 

Fig. 7. Area of division in camera frame 
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3. Results and Discussion 

3.1. Training Results 

Shown in Fig. 8 are the result of the CNN model training after 6000 iteration steps. The mAP 

after 1800 iterations is 92%. After 6000 iterations, the mAP value hits 99%. On the other hand, the 

value of Loss is decreasing as the number of iterations increases. This example's occurrence, mAP 

and Loss value, is typical of learning. To put it another way, the mAP trend runs counter to the loss 

value. The best trained model is selected as the final trained model to be used as the USV detection 

models after performance testing of the trained models. The learning model has achieved its best mAP 

at 1800 iterations, but the present iteration's loss value is still large, and the learning model's greatest 

results were obtained at 6000 iterations which is shown in Table 4. 

 

Fig. 8. Training graph 

Table 4.  Loss value of each epoch 

Epoch Loss 

1000 0.3190 

2000 0.2478 

3000 0.2768 

4000 0.2157 

5000 0.1544 

6000 0.1542 

3.2. Distance and Detection Accuracy 

Navigation testing is done by considering two variable which are light and distance variables. 

The light level is measured with a luxmeter at three different times: morning (07.00 - 10.00), afternoon 

(10.00 - 13.00), and evening (13.00 - 16.00). Distance measurements are measured between the object 

and the USV by 10cm to 120cm. Testing is done with three different objects while observing the USV 

navigation response. The results of object detection are the average of five experimental testing with 

various distance variations. Table 5, Table 6, and Table 7 are the results of navigation experiments 

based on the light level of each object.  

At distances greater than 10 cm and up to 90 cm, Boat 1 produces average accuracy that is greater 

than 80%. In Table 5, the detection has a poor average of accuracy at a distance of 10 cm. At a distance 

of 100 cm to 120 cm, detection on the camera became less accurate, with an accuracy below 70%. 

While detection with an average above 50% is at a distance of 40cm to 100cm with the best detection 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

773 
Vol. 3, No. 4, 2023, pp. 765-779 

  

 

Anik Nur Handayani (Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver) 

 

accuracy located at a distance of 90cm, Boat 2 has an accuracy below 50% at a distance of 10cm to 

30 cm. Accuracy drops to less than 50% at distances greater than 100 cm. While testing from 30 cm 

to 110 cm has a strong detection accuracy level that exceeds 80%, obstacle objects in the test results 

at a distance of 10 cm to 20 cm the camera is too close to the item such that numerous bounding boxes 

appear at once. 

It makes sense that accuracy would decline as distance grew. However, Table 5 result 

demonstrates that the accuracy varies. The circumstance demonstrates that the relationship between 

distance and accuracy cannot be seen as linear. The accuracy of the detection may be impacted by 

additional variables like the angle of the boat relative to the sea and wind. (–) is the bounding box 

unable to locate in x distance.   

Table 5.  Object detection morning time 

Lux Meter Distance (cm) 
Accuracy (5 trials) 

Boat1 Boat2 Obstacle Object 

1353 

10 63.8 43.5 - 

20 80.4 34.8 - 

30 92.3 44.2 93.6 

40 97 52.8 94.4 

50 95.4 60.4 96.4 

60 90.8 75.2 80.5 

70 91.8 68 91.6 

80 80.2 71.6 91.6 

90 83.5 83.75 86.25 

100 72.4 76 89.4 

110 63.2 39.2 83.4 

120 50.4 48.4 65.4 

 

In Table 6 Boat 1 has a sufficient level of accuracy at a distance of 10cm to 20 cm. Good detection 

accuracy at the 80% level is produced at a distance of 30 cm to 110 cm. At a distance of 120 cm the 

camera detection decreased with an average value of 75%. In the second object test Boat 2 camera 

detection on the object experienced a sufficient level of accuracy with an average of 50% at a distance 

of 30 cm to 120 cm while the distance of 10 cm and 20 cm accuracy decreased below 30% due to the 

size of the frame on the camera for the Boat 2 object is too small so that the ship object is not fully 

100% captured by the camera. Testing the third object, namely the Obstacle object, has an average 

accuracy level above 80% from a distance of 30 cm to 110 cm at a distance of 10-20 cm the algorithm 

experiences several repeated detections because the object is too close so that many bounding boxes 

appear. (–) is the bounding box unable to locate in x distance. 

Table 6.  Object detection afternoon time 

Lux Meter Distance (cm) 
Accuracy (5 trials) 

Boat1 Boat2 Obstacle Object 

3795 

10 61.2 27 - 

20 57.8 26.6 - 

30 86 56 94.2 

40 91.4 59.2 93.8 

50 91.2 48.8 94.6 

60 95.6 58.8 94 

70 92 54.2 90.4 

80 98.8 54.6 89 

90 90.4 52.6 88 

100 81.2 51 90.6 

110 66.8 60 84.6 

120 75.8 59.2 75.2 

 

Table 7 shows the result of the object detection testing with each object in the evening time 

conditions. Data collection was carried out at 13:00 - 16:00 within 5 time trials at each distance 
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testing. After testing the detection accuracy at 13:00 - 16:00, Boat 1 result shows low average 

accuracy at a distance of 10 cm. Detection result from distance of 20 cm – 100 cm result are average 

above 80%. Camera detection decreased at a distance of 110 cm – 120 cm. On Boat 2 the detection 

accuracy of the camera decreases with an average below 30% at a distance btween 10 cm to 20 cm. 

At a distance of 30 cm – 120 cm the detection accuracy results are average of 50%. The obstacle 

object test results at a distance of 10 cm – 20 cm are unreadable due to multiple bounding box 

overlapping the intended object detection in a frame. At a testing distance of 30 cm – 120 cm the 

camera accuracy with an average of 80%. The light intensity measurements was taken on 13:00 - 

16:00 were 1758 lux. (–) is the bounding box unable to locate in X distance. 

Table 7.  Object Detection Evening Time 

Lux Meter Distance (cm) 
Accuracy (5 trials) 

Boat1 Boat2 Obstacle Object 

1353 

10 54.6 24 - 

20 85.8 24.6 - 

30 91.8 45.6 89.8 

40 90.2 40.8 91.2 

50 87.6 51 89.4 

60 90.6 48.2 90.6 

70 86.8 44 92.2 

80 90.4 59 91.4 

90 87.6 60.8 92.8 

100 92 57.8 92.6 

110 79.6 59.4 95 

120 79.6 54.6 81.4 

3.3. USV Performance  

In the realistic environment, changes of light as well as water droplets from the water would 

influence the target detection performance. Each detection results from live feed are reviewed 

manually. Detection results from three different time period are illustrated in Fig. 9.  

 

Fig. 9. Object detection result under different environment (a-c) Boat 1 Detection from morning, afternoon 

and evening time (d-f) Boat 2 Detection from morning, afternoon and evening time (g-i) Obstacle object 

detection from morning, afternoon and evening time 



ISSN 2775-2658 
International Journal of Robotics and Control Systems 

775 
Vol. 3, No. 4, 2023, pp. 765-779 

  

 

Anik Nur Handayani (Real-Time Obstacle Detection for Unmanned Surface Vehicle Maneuver) 

 

The upper, middle and lowe row of Fig. 9 listed above are the detection results achieved under 

different environmental condition using YOLOv4-tiny algorithm. During the experiment reflective 

light occured on the afternoon time Fig. 9 (b), (e), (h). The YOLOv4-tiny has potential to properly 

classified the designated object with high accuracy despite the environmental condition. However, the 

experimental results demonstrate that the proposed YOLOv4-tiny is unstable againts changes of the 

environmental condition despite its tolerance to the USV speed. 

3.4. Distance and Manuever Accuracy 

To evaluate the servo degree, detection accuracy and navigation response of The USV,  distance 

and manuever accuracy test is conducted. The detection targets from the live-feed camera are put into 

different location on the frame. Table 8 shows the result of the of maneuver testing at a distance 

between 10 – 120 cm. The result shown at 10 cm distance the USV correctly take action to stop at 10 

cm with 100% accuracy with 5 time trials. Expected result of the USV between 20 – 120 cm results 

are the USV need to approach designated object which detected by the camera. The result shown the 

optimal distance for the object to be detected are between 70 – 90 cm which resulted a 100% accuracy. 

Compare to Table 9 at a distance 10 cm the USV also have the same expected response which to stop 

at 10 cm with 100% accuracy. Optimal detection distance along with the navigation response of the 

USV with Boat 2 object are achieved with a distance at 90 – 100 cm, resulting in 100% accuracy. 

Lastly in Table 10 at a distance 10cm the USV response is to stop in front of the object which from 

the result of the overlapping bounding box. This effect the detection classification since it is 

unrecognizable by the algorithm and the USV response is to stop. If the USV detect the ostacle object 

above 10 cm the USV would recognize the obstacle object and take action to turn and avoid. Based 

on the experiment the optimal distance achieved for the USV to take turn for the obstacle object is at 

a distance of 40 – 110 cm. A is the The USV stop, B is the The USV approach an object and C is the The 

USV approach and avoid an object. 

Table 8.  Boat 1 detection navigation accuracy based on servos degree 

Distance (cm) 0° 90° 180° Accuracy (%) 

10 A (1) A (1) A (1) 100% 

20 A (1) A (0.2) A (0.2) 100% 

30 B (0.6) B (0.6) B (0.8) 67% 

40 B (0.6) B (0.6) B (0.8) 67% 

50 B (0.6) B (1) C (1) 86% 

60 B (0.8) B (1) C (1) 93% 

70 B (1) B (1) C (1) 100% 

80 B (1) B (1) C (1) 100% 

90 B (1) B (1) C (1) 100% 

100 B (1) B (0.8) C (1) 93% 

110 B (0.8) B (0.4) C (1) 73% 

120 B (0.4) B (0) C (0) 13% 

Table 9.  Boat 2 detection navigation accuracy based on servos degree 

Distance (cm) 0° 90° 180° Accuracy (%) 

10 A (1) A (1) A (1) 100 

20 A (0) A (0.4) A (0.2) 26.7 

30 B (0.2) B (0.4) B (0.4) 33.3 

40 B (0.2) B (0.6) B (0.4) 33.3 

50 B (0.4) B (0.6) B (0.8) 60 

60 B (0.4) B (0.6) B (0.8) 60 

70 B (0.6) B (0.8) B (1) 80 

80 B (0.8) B (1) B (1) 93 

90 B (1) B (1) B (1) 100 

100 B (1) B (1) B (1) 100 

110 B (0.6) B (0.6) B (0.6) 60 

120 B (0.2) B (0.4) B (0) 20 
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Table 10.  Obstacle object detection navigation accuracy based on servos degree 

Distance (cm) 0° 90° 180° Avg Accuracy (%) 

10 A (1) A (1) A (1) 100% 

20 A (0) A (0) A (0) 100% 

30 A (0) A (0) C (0.8) 26% 

40 C (1) C (1) C (1) 100% 

50 C (1) C (1) C (1) 100% 

60 C (1) C (1) C (1) 100% 

70 C (1) C (1) C (1) 100% 

80 C (1) C (1) C (1) 100% 

90 C (1) C (1) C (1) 100% 

100 C (1) C (1) C (1) 100% 

110 C (1) C (1) C (1) 100% 

120 C (1) C (0.8) C (0.8) 86% 

4. Conclusion 

In conclusion, this study introduced a novel YOLOv4-tiny detection method for the real-time 

identification of water surface targets in diverse environmental conditions. The results clearly 

demonstrate the superiority of our approach over conventional color detection methods, with a 

remarkable mean Average Precision (mAP) of 99.51% and an Intersection of Union (IoU) of 87.80%. 

By employing a 2MP Logitech webcam-type camera as a visual tool in conjunction with YOLOv4-

tiny, we achieved an impressively low error value of 0.1542. This innovative system equips 

Unmanned Surface Vehicles (USVs) with the ability to effectively operate amidst unpredictable 

environmental changes, significantly enhancing their detection adaptability. Looking forward, our 

research roadmap includes: (1) The integration of GPS and the development of an advanced 

navigation algorithm to empower the USV's path planning capabilities during detection missions. (2) 

We are committed to optimizing our detection model to expedite training and elevate the overall 

performance of the USV. The implications of this study extend far beyond the realm of autonomous 

navigation. Our work paves the way for safer maritime operations, precise environmental monitoring, 

and enhanced scientific research capabilities. The unpredictable factor such as varying light, winds, 

and water flows are added as future work. As we step into the future, we are excited about the 

transformative potential of this research in revolutionizing the field of unmanned surface vehicle 

technology. 
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