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ABSTRACT

We have developed and experimentally tested a set of models for the
detection and identification of sensor faults that commonly occur in
wireless sensor networks. Considered faults include outlier, spike,
variance, high-frequency noise, offset, gain, and drift faults. These faults
affect the system operations and can endanger operators, final users,
and the general public. The fault detection models are divided into two
classes: data-centric models, which only analyze a single data stream, and
system-centric models, which consider the overall system. For data-centric
models, we use the magnitude, the gradient, and the variance of raw
sensor data to model faults. For system-centric models, we introduce
variogram-based techniques that allow faults to be detected by comparing
readings from multiple sensors that measure related phenomena. For
data-centric and system-centric sensor fault detection, we show how a few
model parameters affect the sensitivity of wireless sensor network fault
models. We present simulation and experimental results that illustrate
the fault detection and identification models. The system is intended for
health monitoring applications of the NASA Stennis Space Center (SSC)
test stands and widely distributed support systems, including pressurized
gas lines, propellant delivery systems, and water coolant lines. The
testbed consists of Coremicro® reconfigurable embedded smart sensor
nodes capable of wireless communication, a network-capable application
processor, a wireless base station, the software that supports sensor and
actuator health monitoring, a database server, and a smartphone running a
health monitoring Android application.

This is an open access article under the CC-BY-SA license.

1. Introduction

Wireless sensor networks (WSNs) can range from a small handful to hundreds or thousands of
sensor nodes with various sensors monitoring diverse physical phenomena. WSNs are used to fa-
cilitate the automation of factories, monitor off-shore drilling equipment, quantify the health of oil
refineries, and many other applications. In health monitoring applications, a WSN can measure any-
thing from the efficiency of a turbine to the pressure in a pipe. Faulty sensor readings in these ap-
plications can lead to unnecessary shutdowns of plants or disruptions in monitored processes. While
sensor technology advancements can reduce fault occurrences, they cannot be completely eliminated.
Therefore, it is important to develop models and techniques that differentiate between legitimately
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unhealthy conditions and faulty sensor readings in WSNs. This paper explores fault detection and
identification techniques and develops mathematical models for such faults in WSNs.

Sensor and actuator faults in complex distributed electro-mechanical systems are well studied
[1, 2], and in industrial wireless sensor networks [3]. In [1], a systematically characterized taxonomy
of common sensor data faults that occur in deployed sensor networks and the detailed approaches
commonly taken to model these faults are provided. These features include characteristics specific
to the data, system, or environment pertaining to the system of interest. According to [1], the data
features are usually statistical in nature. A confident diagnosis of any single fault may require more
than one of these features to be modeled. The fault detection techniques most commonly used include
mean and variance (determine expected behavior via regression models or correcting faulty sensor
values), correlation (regression methods), gradient (rate of change), and spatial or temporal distance
(determine if data is faulty). Table 1 shows common fault detection techniques that include statistical,
nearest neighbor, clustering, and classification methods.

Table 1. Common fault detection techniques.

Ref Method Pros Cons
[4, 5] Statistical Mathematically justified models Fails if data do not fit assumed dis-

tribution
[6, 7] Classificat. Provides an exact set of faults Computationally expensive, re-

quires proper kernel choice
[9,
10]

Nearest
neighbor

No assumptions on data distribution Computationally expensive in large
networks, dependent on input pa-
rameters

[11] Clustering No previous knowledge of data
statistics needed, adapt to new data

Cluster width must be defined

Statistical methods create a model of healthy data and then classify any behavior that does not fit
that model as a fault. For example, a statistical model of an outdoor temperature sensor may assume
that temperature should be high during the day and low at night and register a fault anytime that
trend is not observed. In this case, a fault could indicate a malfunction in the sensor network or an
environmental irregularity, like a storm. Statistical methods have the advantage of being based on
justifiable mathematical models but are not robust to phenomena that do not fit assumed distributions.

Fault classification methods take the opposite approach, and instead of creating mathematical
models for healthy data, they use mathematical models for faulty data. Incoming data from the WSN
is analyzed for behavior that corresponds to the faulty behavior previously modeled. The main advan-
tage of classification methods is that they allow users to specify an exact set of faults to be considered,
while the main disadvantage is that they usually cannot detect faults not previously observed.

Nearest neighbor methods forgo data models in favor of using a sensor-to-sensor comparison as
a fault metric. These methods identify sets of sensors whose data should be similar (i.e., the spatially
nearest sensors). Anytime these neighbors report significantly different readings from each other, a
fault is registered. The main advantage of nearest-neighbor methods is that they allow faults to be
detected without a mathematical model for healthy or faulty data. The main disadvantage is that they
require appropriate neighbors to be defined, and mistakes in deciding which sensors are related can
result in poor data comparisons.

Clustering-based methods compare clusters of nodes rather than sensors. During a learning pe-
riod, sets of nodes are grouped into clusters, which are then compared to each other to establish which
clusters are measuring related data. During fault detection, each cluster compares its data with its re-
lated clusters, and faults are registered whenever two related clusters do not measure similar data.
Clustering methods are less computationally expensive than nearest-neighbor methods. The main
disadvantage of clustering methods is the difficulty of appropriately defining clusters.
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Table 2 contains results from the literature on fault detection and split them into categories useful
for mathematical modeling. In [12], principal component analysis (PCA) is used during a learning
period to model healthy data behavior with the first four eigenvectors. Using these eigenvectors as
a baseline for healthy behavior, any activity that falls outside of the healthy model is considered an
outlier. In [7], a support vector machine models healthy behavior and detects outliers in real time
for a WSN. In [13], possible outliers are sorted and ranked periodically, speeding up the process of
outlier discovery for a high-dimensional dataset.

Table 2. Fault detection in sensor networks research results.

Ref Method Pros Cons
Outliers

[12] PCA Few false negatives, even with substan-
tial drift and foreground variations

Local predictions not robust to
faulty sensors

[7, 8] SVM Classification High accuracy, few false alarms Computationally complex

[13] Hash-Based Ranking
Scheme

Detects top outliers with small dataset Computationally complex

Noise
[14] Nearest Neighbor Works with small number of neighbor

nodes
Assumes normally distributed
noise

[15] Nearest Neighbor,
Clustering

Determines minimum neighborhood
size

Requires fusion node

[16] Nearest Neighbor, Sta-
tistical

Error probability decreases monotoni-
cally as the number of sensors increases

Computationally complex

Stuck Sensors
[17] Clustering with random

calls
Prevents faulty sensors from having dis-
proportionately heavy loads

Less robust to localized events

[18] Clustering Relatively simple comparison process Requires fusion node

[19] Nearest Neighbor,
Classification

Removes faulty and malicious nodes
from network

Requires knowledge of fault
probability in healthy sensors

Calibration
[20] Nearest Neighbor Allows a large number of nodes to be

autonomously calibrated from a small
base set

Requires dense sensor deploy-
ment

[23] Nearest Neighbor Blindly calibrates network, does not re-
quire dense sensor deployment

Assumes linear calibration
functions

Calibration methods focus on identifying and accounting for offsets and gains in a WSN. In [20],
it is assumed that the phenomena being measured should have similar behavior everywhere, and the
characteristics of a small base set are used to model the characteristics of the entire network. In [23],
it is assumed that the measured phenomena have some linear correlation between a sensor and its
nearest neighbor. This information is used to calibrate the sensors in the WSN.

Previous fault detection techniques center mainly on simulation-based tests for algorithm develop-
ment. In contrast, in this paper, we provide an overview of multiple fault models and test various fault
detection models on an actual wireless network comprised of industrial-grade sensors. This allows us
to demonstrate functional differences between models in real-world applications and to confirm that
the fault models are capable of improving the health monitoring capabilities of an industrial system.

Other techniques for fault detection and identification include machine learning-based methods
[24]. In [25], a digital equivalent of the sensor was developed using a generative adversarial network.
The trained model works as a digital copy of the real sensor and watches for possible faults in the real
sensors. Recent convolutional neural network-based sensor fault detection methods were developed
in [26]. The convolutional neural network was used to detect and identify the sensor fault, while a
bank of convolutional autoencoders was used to reconstruct the correct sensor data.
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This paper studies fault detection and identification in WSNs. Faults included in this study are
outlier, spike, variance, high-frequency noise, offset, gain, and drift faults. These faults affect the
system operations and endanger operators, final users, and the general public. We have developed
a set of fault detection models for WSNs and implemented them on a system consisting of multiple
wireless sensor nodes, fault detection software, a server, and a client (Fig. 1). The system is intended
for health monitoring applications of the NASA Stennis Space Center (SSC) test stands and widely
distributed support systems, including pressurized gas lines, propellant delivery systems, and water
coolant lines [27, 28, 29, 30]. The concepts presented here can also be used in other distributed indus-
trial systems with a large number of networked electromechanical devices. The system within which
our fault models were tested contains distributed software resources for providing ubiquitous infor-
mation capability. The main system blocks are shown in Fig. 1 and include: (a) Server (developed in
[31]); (b) Network Capable Application Processor (NCAP); (c) Communication Module; and (d) set
of Transducer Interface Modules (TIMs) previously developed using the Coremicro Reconfigurable
Embedded Smart Sensor Node (CRE-SSN) [32, 33]. The TIMs monitor sensors that measure physi-
cal phenomena such as temperature, pressure, and flow rate. They communicate measured data to the
NCAP, which analyzes the data for faults. The NCAP records the data (as well as any detected faults)
in a server where it can be accessed later by a user.

Fig. 1. Server-NCAP-TIM configuration.

2. Mathematical Models

Fig. 2 illustrates the sensor network model. Sensor readings for node j are given by

Zj(k) =
[
z1j (k) z

2
j (k) · · · zij(k) · · · zNj (k)

]T
, (1)

where individual sensors on a node are identified as i = 1, 2, . . . , N , [34]. We assume that each node
has an equal number of sensors, N, with output values at time instance k given by zij(k) (i-th sensor on
j-th node at time k). A true value of a measured physical variable is uij(k) and a faulty measurement
of the i-th sensor on the j-th node at time instance k is ẑij(k).

There are two general categories for fault-detection techniques: data-centric and system-centric
[1]. Data-centric techniques focus on a single data stream to identify faults, while system-centric
techniques consider the whole system to detect faults. The two types of techniques need not be used
exclusively. A computationally inexpensive data-centric technique may be used to identify abnormal
behavior on a sensor stream, at which point a more expensive system-centric technique can be imple-
mented that compares the sensor data to related neighboring nodes, verifying whether the abnormal
data reflects an abnormal environment or a faulty sensor reading.
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Fig. 2. Sensor network weighted graph.

2.1. Data-Centric Techniques

For each type of fault, there are defining characteristics, e.g., magnitude for outlier fault or vari-
ance for noise fault. In our approach, we identify a range for that characteristic under normal operating
conditions, and we say that a fault occurs any time the characteristic of interest falls outside of the
expected range.

The energy constraint in WSNs limits communication and computation complexities, while one of
the leading hardware constraints is memory. For a large network, storing every data sample collected
by a sensor is infeasible. Therefore, online fault detection algorithms with a sliding data window are
preferable (“one-pass algorithms” [35]). A sliding window considers the last Wsl data samples from
a sensor data stream. Data samples are stored for the duration of the sliding window and then erased.
This method is robust to changes in the ”normal” behavior of sensor data.

A less robust and less costly method of defining data norms is to use a learning period. A standard
assumption is that sensor data are healthy during the learning period. By analyzing a data stream over
the learning period, normal behavior can be defined. The advantage is that normal behavior has to
be calculated only once. However, the method is not robust to data streams whose behavior changes
with time. For example, the pressure in a pipe may be low during a learning period but rise when
gas is pumped into it. Using a sliding window allows algorithms to update the expected behavior of a
data stream as its normal behavior changes while still detecting true faults in the data stream.

2.1.1 Outlier Fault

We define an outlier as a single data sample whose value is significantly (defined by the user)
outside of the range defined by previous data samples, see Fig. 3 [36]. To quantify this “no-fault
range”, we define Z̄i

j as an upper bound of expected data (i.e., the highest value we expect from the
i-th sensor on the j-th node) and Zi

j as a lower bound of expected data.

The upper and lower bounds Z̄i
j and Zi

j are given by

Z̄i
j(k) = max{zij(p)}+ cout|max{zij(p)} − min{zij(p)}| (2)

Zi
j(k) = min{zij(p)} − cout|max{zij(p)} − min{zij(p)}|, (3)

for p = k0, k0 + 1, ..., k0 + Wln − 1, where k0 is the first data point in the learning period and
Wln is the number of data points in the learning period. We define cout to be a positive constant
that determines the outlier detection sensitivity. For instance, cout = 0.2 allows the signal to vary
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20% of the range above and below the data extrema observed during the learning period. Increasing
cout lowers outlier detection sensitivity by allowing some faulty readings to go undetected but while
reducing the false alarm rate.

When using a sliding window, Z̄i
j(k) and Zi

j(k) are recalculated periodically. Bounds can be
recalculated every time new data is received. For a sliding window of a length Wsl, every time new
data is received, the sliding window is updated, and the bounds become functions of the current data
sample. The running index p in this case is p = k−Wsl, k−Wsl +1, ..., k− 1. The benefit of using
such bounds is that if the range of expected data changes, the bounds will adapt to them. However,
frequent updating of the signal bounds increases the computational cost and is a natural trade-off
between the false alarm rate and computational cost.

We say that an outlier has occurred when the following condition is met:

zij(k) > Z̄i
j(k) or zij(k) < Zi

j(k). (4)

An example of an outlier is shown in Fig. 3.

Fig. 3. Outlier occurring between 100 and 150 seconds.

2.1.2 Spike Fault

We use the term spike to refer to a small number (rs) of data points that rise or fall more rapidly
than the data during the healthy sensor behavior [37]. Fig. 4 shows a spike fault where data returns to
normal behavior after the spike. To define a spike, we look at the gradient of data points and define
the following: R̄i

j being the upper bound on the gradient, which may be ascribed to healthy data on
the i-th sensor at the j-th node; and rs being the number of successive samples required to have an
unhealthy gradient before a spike occurs.

As with outliers, the bound we use to determine healthy behavior is based on a learning period
Wln or a sliding window and is defined as

R̄i
j(k) = (1 + cspk)max{|zij(p)− zij(p− 1)|} (5)

for p = k0, k0 + 1, · · · , k0 +Wln in case of a fixed learning period and p = k − rs −Wsl, k − rs −
Wsl + 1, · · · , k − rs − 1 in case of a sliding window; cspk is a positive constant that determines the
detection sensitivity.

When using a sliding window, the gradient bound is a function of sample time k, and it is assumed
that data in the sliding window are healthy. The end of the sliding window should be set more than rs
samples away from the current data sample.

Rastko R. Selmic (Wireless Sensor Networks Fault Detection and Identification)
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Fig. 4. Spike fault occurring between 100 and 150 seconds.

The number of successive samples, rs, required for a spike fault is influenced by the phenomena
being measured and the sampling rate. Some phenomena, such as light intensity, may be expected
to produce signals with sharp gradients [1] while others are expected to change smoothly. For a
slowly varying signal, a spike could indicate a fault in the sensor or that the sampling rate is too slow.
Regardless, a spike in a data stream is a characteristic of interest and rapid detection is important.
A small rs will hasten the detection of spikes, which is crucial in time-constrained applications.
Conditions for spike detection are given by:

zij(k)− zij(k − 1) > R̄i
j

zij(k − 1)− zij(k − 2) > R̄i
j

...

zij(k − (rs − 1))− zij(k − rs) > R̄i
j

(6)

or
zij(k)− zij(k − 1) < −R̄i

j

zij(k − 1)− zij(k − 2) < −R̄i
j

...

zij(k − (rs − 1))− zij(k − rs) < −R̄i
j

(7)

where (6) and (7) represent criteria for upward and downward spikes respectively. The necessity
for the two sets of conditions, instead of just taking the absolute value of the gradient, is because a
spike fault model requires rs successive points to have either abnormally large positive or negative
gradients. Moreover, this eliminates false positive spike identification when high-frequency noise is
present, resulting in sensor readings having large gradients in random directions.

2.1.3 Variance Fault

The term variance fault is used to describe a set of data whose values tend to differ from the mean
of that set by an abnormally large or small amount [38], where the threshold parameters are chosen by
the user. Defining the length of the window over which variance is calculated as Wv, and the expected
value of data over that window as zij(p), the variance is then given by

V i
j (k) =

1

Wv − 1

k−1∑
p=k−Wv

(
zij(p)

)2 − (
zij(p)

)2
. (8)

Rastko R. Selmic (Wireless Sensor Networks Fault Detection and Identification)
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There are two types of variance faults: low and high variance faults. A low variance fault (also called
a stuck-at fault) occurs when the variance of a data stream is abnormally low, i.e., when a signal is
stuck at a certain value. A high variance fault occurs when the variance is abnormally high. The
model parameters include V i

j and V
i
j , a lower and an upper bound on signal variance under healthy

conditions. Using a learning period, the variance fault thresholds are given by:

V
i
j = (1 + cvar)max{V i

j (p)}, (9)

V i
j = (1− cvar)min{V i

j (p)}, (10)

where p = k0, k0 + 1, · · · , k0 +Wln, the length of the learning period is Wln, and cvar is a constant
that determines the variance sensitivity. Using a sliding window, the index p belongs to a set of Wsl

points as p = k −Wsl, k −Wsl + 1, · · · , k − 1. We say that a variance fault has occurred if

V i
j (k) > V

i
j(k) or V i

j (k) < V i
j(k). (11)

Increasing the learning or sliding window size provides a larger sample size for determining the
variance. If the phenomena being measured are slow-varying throughout the learning period, it will
result in a more accurate representation of the steady-state variance of the system. However, if the
phenomena are fast-varying over the learning period, signal changes will be reflected in the healthy
variance parameters. A small window size will emphasize the role of variance as imperfections in the
system but will also increase false positives. Fig. 5 and Fig. 6 show low variance and high variance
faults, respectively.

Fig. 5. Low variance fault occurring between 120 and 160 seconds.

Fig. 6. High variance fault occurring between 150 and 200 seconds.

There are several possible causes of variance faults. The term ”noise” is often used to describe
some high-variance faults in the case of signals with particular mathematical attributes. Several types
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of noise exist, such as white noise, pink noise (equal power in bandwidths that are proportionally
wide; see below), and violet noise (increases with frequency). Noise is usually classified by its
behavior in the power spectrum, and we use the Fast Fourier Transform (FFT) to detect and isolate a
noise fault.

2.1.4 High-Frequency Noise Fault

Noise classification and quantification are usually done in the frequency domain. We use the FFT
to obtain the signal power spectrum, Fig. 7. Here, we describe a method for detecting undesired
high-frequency signals in the power spectrum and how to distinguish the presence of unexpected
high-frequency useful data and high-frequency noise [39].

Fig. 7. Time domain and power spectrum for a sinusoid with a small amount of white noise (top) and a large
amount of white noise (bottom).

Fig. 7 illustrates how the FFT can be used to detect noise in a sensor signal. Fig. 7 shows a power
spectrum of a 50 Hz sinusoid with added white noise at different power levels. The uniform effect of
white noise over the power spectrum can be observed. Conversely, if the high variance fault is caused
by a new high-frequency signal added to the data stream, only a specific high-frequency band will be
affected.

We define the window of data on which the FFT is performed as Wfft. The variables that define
a high-frequency noise fault include Y

i
j – the maximum power level classified as noise in the power

spectrum, and νij – the highest frequency of a useful signal with a power spectrum contribution above

the noise level Y i
j .

To define what constitutes a meaningful contribution to the power spectrum, we compute the
power spectrum of a signal over a range of frequencies from ν = 0 to ν = νmax. We assume
that the highest frequency (νmax) is significantly higher than any frequency, contributing more than
noise to the power spectrum. In particular, we assume the highest frequency component is at least
Wpow higher than any frequency, which makes a meaningful contribution to the power spectrum. The
maximum power level, which noise is expected to contribute, Y i

j , is then based on the power spectrum
contributions of the last Wpow frequency components in the FFT:

Y
i
j = max{Y i

j (ν)}+ cfft|max{Y i
j (ν)} − min{Y i

j (ν)}|, (12)

for ν ∈ (νmax − Wpow, νmax) and where cfft is a parameter that is used to tune the sensitivity of
the high-frequency noise model. Any frequency component with a power spectrum contribution at or
below Y

i
j is considered noise. Any frequency component that contributes a power level above Y

i
j is

Rastko R. Selmic (Wireless Sensor Networks Fault Detection and Identification)
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said to have a meaningful contribution to the data stream. Examining the power spectrum of a signal
over a healthy learning period allows one to define the highest contributing frequency component
under healthy conditions as the highest frequency ν with a power spectrum contribution above Y

i
j :

νij = max{νij | Y i
j (ν) > Y

i
j}. (13)

A high-frequency noise fault is then defined as the phenomenon wherein the power spectrum of
a signal has a meaningful contribution at a frequency higher than the highest frequency expressed
during the learning period:

Y i
j (ν) > Y

i
j , for ν > νij . (14)

2.2. System-Centric Faults

System-centric techniques use data from multiple sensors in the system to detect faults [21, 22].
The following techniques require at least one healthy sensor to be correlated to the faulty sensor. This,
in turn, requires that the nodes in the WSN have multiple sensors that measure the same (or related)
phenomena, i.e., that nodes are densely deployed to the point of oversampling the phenomena of
interest [23].

To determine whether or not two sensors are sampling related data, we use variograms. Vari-
ograms allow us to quantify the correlation of phenomena at one point in the system with phenomena
at another point in the system. A variogram γij,l between sensors j and l is defined as:

γij,l =
1

2Wvgm

Wvgm−k0∑
p=k0

(
zij (p)− zil (p)

)2
, (15)

where Wvgm is the window of data where the variogram is being calculated. In the event of spatial
correlation among sensors, the variogram is a function of radius r around sensor j:

γi
j(r) =

1

2Wvgm|Ωj(r)|
∑

qϵΩj(r)

Wvgm−k0∑
p=k0

(
zij (p)− ziq (p)

)2
where r is the radius around sensor j, Ωj(r) is the set of all neighbors of sensor j within radius r,

and |Ω| is cardinality of the set Ω. A small variogram implies a high correlation among the sensors.
We say that if the variogram between a sensor and its neighbors is smaller than some threshold Γ,
then the sensor reading is related to its neighbors.

2.2.1 Offset Fault

An offset fault occurs when sensor data values are offset from the true phenomenon being mea-
sured by a constant amount:

ẑij(k) = f
(
uij(k)

)
+ β0, (16)

where the function f represents a nonlinear sensor model, uij(k) is a true value being measured on the
i-th sensor on j-th node, and β0 is the offset. Fig. 8 shows an example of an offset fault. To determine
the offset value, one usually requires either a ground truth value of the sensor readings or a precise
sensor model f , see [27]. We instead assume that the sensor network is distributed densely enough
that any sensor has at least one related neighbor. An offset is defined as the steady-state condition of
a constant difference between the readings of a sensor and the readings of its related neighbors.

Rastko R. Selmic (Wireless Sensor Networks Fault Detection and Identification)
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Fig. 8. The green signal has a constant offset compared to the blue signal.

To model an offset, we consider the difference between a sensor’s readings and the average of the
readings of its related neighbors:

∆i
j(k) = zij(k)−

1

|Ωj |
∑
qϵΩj

ziq(k). (17)

A constant offset is modeled as a slow-varying difference between a sensor’s measurements and
the true value being measured. To distinguish between a constant offset and a time-changing offset
(which may be considered a drift fault, see below), the variance, var

(
∆i

j(k)
)

, over a window Woft

is observed. The conditions for an offset fault are that the difference between a sensor’s readings
and the readings of its related neighbors be above the threshold value and that the variance of the
difference is sufficiently small, i.e., ∆i

j(k)≥coft and var
(
∆i

j(k)
)
≤βoft, where coft and βoft are

model parameters.

2.2.2 Gain Fault

A gain fault occurs when the sensor data for a certain measured phenomenon differ from the
healthy sensor data by a constant ratio (see Fig. 9) [40]. In the event of a gain fault, we expect the
gain of a sensor’s readings compared to the average of its neighbor’s readings, ηij,gn, to be significantly
lower or higher than 1. This ratio is defined as

ηij,gn(k) =
zij(k)

1
|Ωj(k)|

∑
qϵΩj

ziq (k)
. (18)

To quantify the variation of the sensor’s gain, we consider the var
(
ηij,gn(k)

)
over a window Wgn.

A gain fault has occurred when |ηij,gn(k)− 1|≥cgn and var
(
ηij,gn(k)

)
≤βgn, where cgn and βgn are

small, adjustable parameters.

2.2.3 Drift Fault

A drift fault occurs when sensor readings drift away from the real values by an amount that
increases with time, Fig. 10 [41]. Given ∆i

j(k), a drift fault model represents a steady increase in
time, i.e., an offset increment λi

j(k, L) = ∆i
j(k)−∆i

j(k − L) is a function of time increment L:

λi
j(k, L) = λi

j(L) = cdft. (19)

If cdft varies with time, then (19) models a drift that is increasing according to the integral of cdft.
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Fig. 9. The green signal has a different gain than the blue signal.

Fig. 10. The offset between the signals is steadily increasing, resulting in a drift fault.

3. Experimental Results

We gathered data from a wireless sensor network composed of industrial-grade sensors to test our
models. Fig. 11 shows the experimental testbed that was used for sensor fault detection, fault infor-
mation processing, and data storage. The testbed consists of Coremicro® Reconfigurable Embedded
Smart Sensor Nodes (CRE-SSNs) [33] capable of ZigBee wireless communication, an NCAP with
a ZigBee wireless base station, NCAP software that supports sensor and actuator health monitoring,
a database server, and a smartphone running a health monitoring Android application. Each node
can read and wirelessly transmit data from up to four sensors simultaneously. The sensors measure
their environment and report these measurements to the wireless sensor nodes. The nodes wirelessly
transmit the sensor data to the ZigBee wireless base station, which reports its readings to the NCAP,
where software processes and records the data.

As an example of healthy sensor behavior, 10 sets of 6400 data samples (each approximately 1
minute long) were recorded. The experiment was carried out under two assumptions: (1) the phe-
nomenon being measured (temperature) was slow-varying throughout all datasets, and (2) the health
of the system was constant throughout all datasets. The obtained sensor data is shown in Fig. 12.

The characteristics of interest, other than the raw sensor data, are the gradient, variance, offset,
gain, and drift of each sensor. Note that Data Set 1 has a spike just before 20 seconds and this spike
in raw data results in a spike for all of the characteristic plots simultaneously. A single sensor fault
may result in multiple fault types being flagged.
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3.1. Data-Centric Parameters

Each data-centric fault model has two main parameters: a threshold parameter and a window size.
Higher values for the threshold constants cout, cspk, and cvar, hereafter referred to collectively as cxxx,
are expected to correspond to lower numbers of faults being flagged for a given dataset, regardless of
whether a learning period or a sliding window is used. The data in Fig. 12 was analyzed with various
values of cxxx, and results for two different data sets are shown in Fig. 13 and Fig. 14. A window
size of 100 samples was used for both the learning period and the sliding window experiments.

Fig. 11. The experimental testbed used to gather data is seen above.

Fig. 12. Datasets used to experiment with model parameters. The insert shows a close-up of the data from 20
to 20.1 seconds.

A constant value of cxxx = 0.2 was used in both the learning period and the sliding window
experiments. The largest window size examined has 210 points, and data streams were analyzed for
faults from the 211th point onwards. Fig. 15 shows the number of faults detected versus the window
size when using a learning period to define normal behavior. Fig. 16 shows the number of faults
detected versus the window size when using a sliding window to define normal behavior.

Note that a large window size results in more variance faults detected. This shows that the variance
of these data streams over the latter part of the learning period was not indicative of the typical
variance for the sensors. When a sliding window is used, larger window sizes result in fewer variance
faults and fewer outlier and spike faults, as was expected.
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Fig. 13. Number of data-centric faults detected for various values of cxxx with Wln = 100: (i) Top left:
outliers; (ii) Top right: spikes; (iii) Bottom left: low variance; and (iv) Bottom right: high variance.

Fig. 14. Number of data-centric faults detected for various values of cxxx with Wsl = 100: (i) Top left: outliers;
(ii) Top right: spikes; (iii) Bottom left: low variance; and (iv) Bottom right: high variance.

3.2. High-Frequency Noise Parameters

High-frequency noise is modeled similarly to the other data-centric faults; however, the frequency
domain analysis imposes certain constraints. Namely, using the Fast Fourier Transform (FFT) places
constraints on the window size used (power of two). While a dataset may be “padded” with zeros to
bring the total number of points up to the nearest power of two, this padding skews the noise levels
of the power spectrum.

The high-frequency noise fault model has three main parameters: the threshold parameter cfft,
the window of data used Wfft, and the window of frequencies assumed to be purely attributed to noise
at the upper end of the power spectrum Wpow. As with the other threshold parameters, increasing the
value of cfft is expected to decrease the number of high-frequency noise faults detected for a given
dataset. Using a larger Wfft is expected to yield a better approximation of a data stream’s behavior
and is also expected to correspond with a lower number of faults detected. Finally, using a larger
Wpow assumes that a larger range of frequencies can be attributed to noise during the learning period.
Because the datasets under consideration are approximating a slow-varying phenomenon (assuming
the temperature was constant during data collection), this results in a better approximation of the
typical noise level for a dataset. Therefore, we expect larger values of Wpow to correspond with fewer
high-frequency noise faults detected in a given dataset. Fig. 17, Fig. 18, and Fig. 19 show the effects
of varying cfft, Wfft, and Wpow, respectively. To cover a wide range of values for Wfft (4 - 1024
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points), the value of Wpow was set dynamically to one-fourth of Wfft rather than statically set to a
constant value.

Fig. 15. Number of data-centric faults detected for various values of Wln with cxxx = 0.2: (i) Top left: outliers;
(ii) Top right: spikes; (iii) Bottom left: low variance; (iv) Bottom right: high variance.

Fig. 16. Number of data-centric faults detected for various values of Wsl with cxxx = 0.2: (i) Top left: outliers;
(ii) Top right: spikes; (iii) Bottom left: low variance; and (iv) Bottom right: high variance.

3.3. System-Centric Paramaters

The variogram is used in system-centric techniques where the parameter Γ controls the size of a
set of correlated neighboring sensors. Increasing Γ is expected to correspond with a higher number
of related neighbors for a sensor. Each of the system-centric models has two main parameters: a
threshold parameter representing the magnitude of the fault, (coft, cgn, and cdft) and a parameter
representing the consistency of the fault over time (βoft, βgn, and βdft). Hereafter, we collectively
refer to the threshold parameters for system-centric models as cyyy and the consistency parameters
for system-centric models as βyyy.

Larger values of βyyy are expected to correspond with fewer faults being detected and represent
looser constraints on the long-term behavior of the fault. For instance, a high βdft means that as long
as a data stream is consistently rising while its related neighbors are not, a drift fault will be flagged.
A lower βdft represents stricter conditions that the offset between the faulty sensor and its related
neighbors be linearly increasing with time. Similarly, the magnitude of βgn determines how constant
the gain of a sensor must be compared to its related neighbors, with a lower βgn imposing the stricter
constraints of a constant gain. We examine the effect of both varying the threshold and consistency
parameters in Fig. 20 and Fig. 21, respectively.
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Varying the threshold parameter for each fault has the expected effect. Fig. 20 shows the number
of detected faults when threshold parameters are changed. Fig. 21 shows the number of detected
faults versus the consistency parameter. Note that for offset and drift faults, a higher consistency
parameter results in more faults being detected, as expected. For gain faults, however, the consistency
parameter has a different effect. No gain faults are detected when the consistency parameter is set to
zero, but for any value higher than zero, the same number of gain faults are detected. This behavior
was found regardless of the values of the threshold parameter cgn. Such step behavior suggests that for
gain faults, the threshold parameter has a much greater effect on the sensitivity than the consistency
parameter.

Fig. 17. Number of high-frequency noise faults detected for various values of cfft with Wfft = 256 and
Wpow = 32.

Fig. 18. Number of high-frequency noise faults detected for various values of Wfft with cfft = 0.2 and
Wpow = Wfft/4.

While these models have shown satisfactory performance with our testbed, please note that there
is always a trade-off between sensitivity and false positives in fault detection. There is no universal
value of the fault detection parameters presented here that would work for any application. Setting
proper values of those parameters requires the operator’s experience and intuition related to the spe-
cific system. Some parameters, such as upper and lower data limits for outlier faults, can be adjusted
online. However, the window size and other sensitivity parameters are based on experience. Fu-
ture research will study intelligent learning techniques where algorithms will set all fault detection
parameters.
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Fig. 19. Number of high-frequency noise faults detected for various values of Wpow with Wfft = 512 and
cfft = 0.2.

Fig. 20. The number of system-centric faults versus the threshold parameter cyyy with βyyy = 1; (i) Top left:
offset; (ii) Top right: drift; and (iii) Bottom left: gain.

4. Conclusion

We have developed models for common faults in WSNs. It is important to be able to differentiate
between true data changes and sensor faults to have a full understanding of a system’s health. The
models developed here are intended as a library of common fault types to be considered when gath-
ering and analyzing data from a WSN. The developed models are designed to work for a wide variety
of sensors and applications by tuning and adjusting model parameters. The effects of adjusting these
parameters for an industrial temperature sensor were explored. The sensitivity of the models was
evaluated using experimental testbed results. While the various fault models were evaluated on the
WSN, the methods presented here apply to any distributed electro-mechanical system consisting of
multiple sensors, actuators, and networks. The network communication does not need to be wireless.

Future work will create a corresponding library of models for common equipment failures in a
system. The models of equipment failures can then be compared to the sensor fault models developed
here, and algorithms that differentiate between the two can be developed. Differentiating between
true physical system anomalies and sensor faults will allow for more precise monitoring of a system’s
health. Using novel machine-learning methods for learning healthy sensors’ data and later detecting
faults is another future research topic. The learning methods can be used to learn the system model
or just data. The machine learning techniques can also be considered as a tool to automatically adjust
various fault detection parameters currently set manually.
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Fig. 21. The number of system-centric faults versus the consistency parameter βyyy with cyyy = 0.2; (i) Top
left: offset; (ii) Top right: drift; and (iii) Bottom left: gain.
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